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A Multiple-Baseline Stereo

Masatoshi Okutomi, Member, IEEE, and Takeo Kanade, Fellow, IEEE

Abstract—This paper presents a stereo matching method that
uses multiple stereo pairs with various baselines to obtain precise
distance estimates without suffering from ambiguity.

In stereo processing, a short baseline means that the estimated
distance will be less precise due to narrow triangulation. For
more precise distance estimation, a longer baseline is desired.
With a longer baseline, however, a larger disparity range must be
searched to find a match. As a result, matching is more difficult,
and there is a greater possibility of a false match. Therefore, there
is a tradeoff between precision and accuracy in matching.

The stereo matching method presented in this paper uses multi-
ple stereo pairs with different baselines generated by a lateral
displacement of a camera. Matching is performed simply by
compufiig ‘the sum of squared-difference (SSD) values. The SSD
functions for individual stereo pairs are represented with respect
to the inverse distance (rather than the disparity, as is usually
done) and are then simply added to produce the sum of SSD’s.
This resulting function is called the SSSD-in-inverse-distance. We
show that the SSSD-in-inverse-distance function exhibits a unique
and clear minimum at the correct matching position, even when
the underlying intensity patterns of the scene include ambiguities
or repetitive patterns. An advantage of this method is that we
can eliminate false matches and increase precision without any
search or sequential filtering.

This paper first defines a stereo algorithm based on the SSSD-
in-inverse-distance and presents a mathematical analysis to show
how the algorithm can remove ambiguity and increase precision.
Then, a few experimental results with real stereo images are
presented to demonstrate the effectiveness of the algorithm.

Index Terms— Image matching, mulitple baselines, stereo vi-
sion, sum of squared differences, 3-D vision.

I. INTRODUCTION

TEREO IS A useful technique for obtaining 3-D infor-

mation from 2-D images in computer vision. In stereo
matching, we measure the disparity d, which is the difference
between the corresponding points of left and right images. The
disparity d is related to the distance z by

1
d=BF- 1))
z

where B and F are baseline and focal length, respectively.
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This equation indicates that for the same distance, the
disparity is proportional to the baseline or that the baseline
length B acts as a magnification factor in measuring d in order
to obtain z, that is, the estimated distance is more precise if
we set the two cameras farther apart from each other, which
means a longer baseline. A longer baseline, however, poses
its own problem. Because a longer disparity range must be
searched, matching is more difficult, and thus, there is a greater
possibility of a false match. Therefore, there is a tradeoff
between precision and accuracy (correctness) in matching.

One of the most common methods in dealing with the
problem is a coarse-to-fine control strategy [1]-[5]. Matching
is done at a low resolution to reduce false matches, and then,
the result is used to limit the search range of matching at a
higher resolution, where more precise disparity measurements
are calculated. Using a coarse resolution, however, does not
always remove false matches. This is especially true when
there is inherent ambiguity in matching, such as a repeated
pattern over a large part of the scene (e.g., a scene of a
picket fence). Another approach to remove false matches and
to increase precision is to use multiple images, especially a
sequence of densely sampled images along a camera path
[6]-[9]. A short baseline between a pair of consecutive images
makes the matching or tracking of features easy, whereas the
structure imposed by the camera motion allows integration
of the possibly noisy individual measurements into a precise
estimate. The integration has been performed either by exploit-
ing constraints on the EPI [6], [7] or by a sequential Kalman
filtering technique [8], [9].

The stereo matching method presented in this paper belongs
to the second approach: use of multiple images with different
baselines obtained by a lateral displacement of a camera. The
matching technique, however, is based on the idea that global
mismatches can be reduced by adding the sum of squared-
difference (SSD) values from multiple stereo pairs, that is,
the SSD values are computed first for each pair of stereo
images. We represent the SSD values with respect to the
inverse distance 1/z (rather than the disparity d, as is usually
done). The resulting SSD functions from all stereo pairs are
added together to produce the sum of SSD’S, which we call
SSSD-in-inverse-distance. We show that the SSSD-in-inverse-
distance function exhibits a unique and clear minimum at the
correct matching position, even when the underlying intensity
patterns of the scene include ambiguities or repetitive patterns.

There have been stereo techniques that use multiple im-
age pairs taken by cameras that are arranged along a line
[10]-[12], in the form of a triangle [13]-[15] (called trinocular
stereo), or in the other formation [16]. However, all of these
techniques, except [10] and [16], decide candidate points
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for correspondence in each image pair and then search for
the correct combinations of correspondences among them
using the geometrical consistencies they must satisfy. Since
the intermediate decisions on correspondences are inherently
noisy, ambiguous, and multiple, finding the correct combina-
tions requires sophisticated consistency checks and search or
filtering. In contrast, our method does not make any decisions
about the correspondences in each stereo image pair; instead,
it simply accumulates the measures of matching (SSD’s) from
all the stereo pairs into a single evaluation function, i.e., SSSD-
in-inverse-distance, and ‘then obtains one corresponding point
from it. In other words, our method integrates evidence for
a final decision rather than filtering intermediate decisions.
In this sense, Tsai [16] employed strategy very similar to
ours; he used multiple images to sharpen the peaks of his
overall similarity measures, which he called JMM and WVM.
However, the relationship between the improvement of the
similarity measures and the camera baseline arrangement was
not analyzed, nor was. the method tested with real imagery.
In this paper, we show both mathematical analysis and exper-
imental results with real indoor and outdoor images, which
demonstrate how the SSSD-in-inverse-distance function based
on multiple image pairs from different baselines can greatly
reduce false matches while improving precision.

In the next section, we present the method mathematically
and show how ambiguity can be removed and precision in-
creased by the method. Section III provides a few experimental
results with real stereo images to demonstrate the effectiveness
of the algorithm. Section IV presents conclusions.

II. MATHEMATICAL ANALYSIS

The essence of stereo matching is, given a point in one
image, to find in another image the corresponding point such
that the two points are the projections of the same physical
point in space. This task usually requires some criterion to
measure similarity between images. The SSD of the intensity
values (or values of preprocessed images, such as bandpass
filtered images) over a window is the simplest and most
effective criterion. In this section, we define the sum of
SSD with respect to the inverse distance (SSSD-in-inverse-
distance) for multiple-baseline stereo and mathematically show
its advantage in removing ambiguity and increasing precision.
For this analysis, we use 1-D stereo intensity signals, but the
extension to 2-D images is straightforward.

A. SSD Function

Suppose that we have cameras at positions Py, P1,..., P,
along a line with their optical axes perpendicular to the line and
a resulting set of stereo pairs with baselines By, By, ..., By,
as shown in Fig. 1. Let fo(z) and f;(z) be the image pair at
the camera positions Py and P;, respectively. Imagine a scene
point Z whose distance is z. Its disparity d,(;) for the image
pair taken from P, and P; is

B,F
drip) = —

)

PO Pl P2 Pn
L] L] ®

Bl

B2

Br

Fig. 1. Camera positions for stereo.

We model the image intensity functions fo(z) and f;(x) near
the matching positions for Z as

fo(z) = f(2) + no(z)

filz) = f(z - drii)) + ni(2) A3

assuming constant distance near Z and independent Gaussian
white noise such that

nﬂ(‘r)vni(m) NN(070'121)' 4

The SSD value ey(;) over a window W at a pixel position
z of image fo(x) for the candidate disparity d(;) is defined as

eaiy(z, @) = Y (folz +3) — fiz +dy +5))* (5)
jEW
where the ) jew mMmeans summation over the window. The
d(;) that gives a minimum of ed(i)(z,d(i)) is determined as
the estimate of the disparity at z. Since the SSD measure-
ment eg(;)(z,d;)) is a random variable, we will compute its
expected value in order to analyze its behavior:

Eleqgy(,dy)]

=E| Y (flz+3)— fle+da) — ds) +5)
liew
+ no(z + J) — ni(z +dgy) +j))2}
=E| ) (flz+7) - f(z+da — driy + 5))°
.jew
+ E| Y 2f(@+7) — f(z +d = driy +9)
_JEW
- (no(z + j) — ni(z + dgy + 1))
+ E|Y (nole + 5) — ni(z 1dg) + 4))°
_jGW
= Z (fz +7) — flz +duy — dry + 5)) + 2Nyo?,
JEW

©

where N,, is the number of the points within the window.
For the rest of the paper, F[] denotes the expected value of
a random variable. In deriving the above equation, we have
assumed that d,.(; is constant over the window. Equation (6)
says that naturally, the SSD function eq(;)(x, d(;y) is expected
to take a minimum when d;y = d..(;), i.e., at the right disparity.
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Let us examine how the SSD function eq(;)(x, d(;)) behaves
when there is ambiguity in the underlying intensity function.
Suppose that the intensity signal f(z) has the same pattern
around pixel positions = and = + a

fl@ +3) = f&+a+7)
where a # 0 is a constant. Then, from (6)
Eleawy(@, dv(iy)] = Eleagy(@, dviiy + @)] = 2Nwoi.  (8)

This means that ambiguity is expected in matching in terms of
positions of minimum SSD values. Moreover, the false match
at d,(; + a appears in exactly the same way for all ¢; it is
separated from the correct match by a for all the stereo pairs.
Using multiple baselines does not help to disambiguate.

jew O

B. SSD with Respect to Inverse Distance

Now, let us introduce the inverse distance ¢ such that

1
(== ©
From (2)
driy = BiF¢, (10)
d@y = BiF¢ 1)

where ¢, and ( are the real and the candidate inverse distance,
respectively. Substituting (11) into (5), we have the SSD with
respect to the inverse distance

> (folz +34) - filz + BiF(+ ) (12)

JEW

e((i)(z’ C) =

at position x for a candidate inverse distance C. Its expected
value is

Elec(x,Q)] =
> (fle+7)

JEW

— f(e+ BiF({ = &) + ) + 2Nuor,. (13)

Finally, we define a new evaluation function e¢(12...n)(7, ¢),
which is the sum of SSD functions with respect to the inverse
distance (SSSD-in-inverse-distance) for multiple stereo pairs.
It is obtained by adding the SSD functions e¢;(z,() for
individual sterco pairs:

ecaz-n)(Z,¢) = Z eci)(z, €)- (14)
=1
Its expected value is
Elecan(2:Q)] = Y Elec(s (@, Q)]
=1
=Y > (fle+4)
=1 jeEW
— f(z + BiF(C = &) + 5))* + 2nNyo?2.
(15)

In the next three subsections, we will analyze the character-
istics of these evaluation functions to see how ambiguity is
removed and precision is improved.

355

C. Elimination of Ambiguity 1

As before, suppose the underlying intensity pattern f(z)
has the same pattern around z and z + a (see (7)). Then,
according to (13), we have

Ele¢sy(z,¢r)) = Elecqy(®, 6 + )] = 2Ny03.

a
B,F (16)
We still have an ambiguity; a minimum is expected at a faise
inverse distance (5 = ¢, + 5. However, an important point
to be observed here is that this minimum for the false inverse
distance (; changes its position as the baseline B; changes,
whereas the minimum for the correct inverse distance ¢, does
not. This is the property that the new evaluation function,
the SSSD-in-inverse-distance (14), exploits to eliminate the
ambiguity. For example, suppose we use two baselines B;
and Bg (Bl # Bz) From (15)

Elecagn(z, Q)] =
ST (fz+4) = f=+ BiF(¢ - &) +5))°

JEW
+ 3 (f(@+7) = fle+ BoF(¢ = G) +3)* + 4Nuoy.
JEW
17
We can prove that
Elec2)(z,Q)] > 4Nyop = Elecaa(@,¢)]  for ¢ # G
@18

(refer to Appendix A) In words, ec(12)(z,() is expected to
have the smallest value at the correct (., that is, the ambiguity
is likely to be eliminated by use of the new evaluation function
with two different baselines.

We can illustrate this using synthesized data. Suppose the
point whose distance we want to determine is at z = 0, and
the underlying function f(z) is given by

f@) = {ios( z)+2

Fig. 2(a) shows a plot of f(z). Assuming that d,.;;y = 5,
o2 = 0.2, and the window size is 5, the expected values of
the SSD function eg()(x, d(1)) are as shown in Fig. 2(b). We
see that there is an ambiguity; the minima occur at the correct
match d(;) =6 and at the false match d(;) = 13. The match
that will be selected will depend on the noise, search range,
and search strategy. Now, suppose we have a longer baseline
By such that gf = 1.5. From equations (6) and (10), we
obtain Eleq(3)] as shown in Fig. 2(c). Again, we encounter an
ambiguity, and the separation of the two minima is the same.

Now, let us evaluate the SSD values with respect to the
inverse distance ( rather than the disparity d by using (12)
through (15). The expected values of the SSD measurements
Ele¢(1)] and Ele¢(z)] with baselines By and Bs are shown in
Figs. 2(d) and (e), respectively (the plot is normalized such that
B F = 1). Note that the minima at the correct inverse distance
(¢ = 5) does not move, whereas the minima for the false match
changes its position as the baseline changes. When the two
functions are added to produce the SSSD-in-inverse-distance,
its expected values Efec(12)] are as shown in Fig. 2(f). We can

if-4<z<12

ifz<—-4orl12<z. (19)
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Fig. 2. Expected values of evaluation functions: (a) Underlying function; (b)
Eleq)]; © Elegea)ls (d) Ele¢nyls (@) Eleg(z)ls ) Elecan)-

see that the ambiguity has been reduced because the SSSD-
in-inverse-distance has a smaller value at the correct match
position than at the false match.

D. Elimination of Ambiguity 2

An extreme case of ambiguity occurs when the underlying
function f(x) is a periodic function, like a scene of a picket
fence. We can show that this ambiguity can also be eliminated.

Let f(z) be a periodic function with period T. Then, each
e¢iy(x, ¢) is expected to be a periodic function of ¢ with the
period BTF This means that there will be multiple mlmma of
eci)(,€) (i.e., ambiguity in matching) at intervals of g & B + in
¢. When we use two baselines and add their SSD values, the
resulting e¢(12)(, ¢) will still be a periodic function of ¢, but
its period T2 is increased to

T2 =LCM ( (20)

T T
B,F’ ByF
where LCM() denotes least common multiple, that is, the

()
“Town” data set: (a) Image0; (b) image9.

Fig. 3.

period of the expected value of the new evaluation function
can be made longer than that of the individual stereo pairs. Fur-
thermore, it can be controlled by choosing the baselines B; and
B; appropriately so that the expected value of the evaluation
function has only one minimum within the search range. This
means that using multiple-baseline stereo pairs simultaneously
can eliminate ambiguity, although each individual baseline
stereo may suffer from ambiguity.

We illustrate this by using real stereo images. Fig. 3(a)
shows an image of a sample scene. At the top of the scene,
there is a grid board whose intensity function is nearly
periodic. We took ten images of this scene by shifting the
camera vertically as in Fig. 4. The actual distance between
consecutive camera positions is 0.05 in. Let this distance
be b. Fig. 3 shows the first and the last images of the
sequence. We selected a point  within the repetitive grid
board area in image9. The SSD values ec(;)(z,¢) over 5-by-
5-pixel windows are plotted for various baseline stereo pairs
in Fig. 5. The horizontal axis of all the plots is the inverse
distance, normalized such that 8bF = 1. Fig. 5 illustrates the
tradeoff between precision and ambiguity in terms of baselines,
that is, for a shorter baseline, there are fewer minima (i.e.,
less ambiguity), but the SSD curve is flatter (i.e., less precise
localization). On the other hand, for a longer baseline, there
are more minima (i.e., more ambiguity), but the curve near
the minimum is sharper, that is, the estimated distance is more
precise if we can find the correct one.
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Fig. 4. “Town” data set image sequence.

Fig. 6. Combining two stereo pairs with different baselines.

b
%E‘\k / the dotted curve show the SSD for B = 5b and B = 8b,
0 3 70 15 20 i

respectively. Let us suppose the search range goes from 0 to

SSD

20 in the horizontal axis, which in this case corresponds to
12 to oo inches in distance. Although the SSD values take a

(@)
7
minimum at the correct answer near { = 5, there are also other
minima for both cases. The solid curve shows the evaluation
0 5 16 15 50

function for the multiple-baseline stereo, which is the sum of

§SD

the dashed curve and the dotted curve. The solid curve shows

(®)
7 only one clear minimum, that is, the ambiguity is resolved.
Thus far, we have considered using only two stereo pairs.
‘ ) We can easily extend the idea to multiple-baseline stereo,
o 5 10 15 20
©

$SD

which uses more than two stereo pairs. Corresponding to (20),
the period of Ele¢(12...n)(, ()] becomes

T T T
%mm / Tio,.. = LCM( , _) (21)
0 * 70 15 % B1F' ByF' "’ B.F

S§SD

8 2 where B1, By, ..., B, are baselines for each stereo pair.
“° We will demonstrate how the ambiguity can be further
%W reduced by increasing the number of stereo pairs. From the
° 5 70 15 20 data of Fig. 4, we first choose imagel and image9 as a
© long baseline stereo pair, i.e., 1) B = 8b. Then, we increase

the number of stereo pairs by dividing the baseline between
imagel and image9, ie., 2) B = 4b and 8b, 3) B = 2b,
4b, 6b, and 8b, 4) B = b, 2b, 3b, 4b, 5b, 6b, 7b, and 8b.
0 s 10 5 » Fig. 7 demonstrates that the SSSD-in-inverse-distance shows

® the minimum at the correct position more clearly as more
stereo pairs are used.

SSD
]

)
o

E. Precision

® We have shown that ambiguities can be resolved by using
the SSSD-in-inverse-distance computed from multiple baseline
stereo pairs. The technique also increases precision in estimat-
ing the true inverse distance. We can show this by analyzing
the statistical characteristics of the evaluation functions near
() the correct match.

Fig. 5. SSD values versus inverse distance: (a) B = b; (b) B = 2b; (c) From (3), (10), and (12), we have
B = 3b; (d)B_4b (e) B = 5b; (f) B = 6b; (g) B = 7b; (h) B = 8b.
The horizontal axis is normalized such that 8bF = 1.

$SD
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o
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eciy(@:¢) =Y (f@+35) = fle+BiF(C = ) + )
Now, let us take two stereo image pairs: one with B = 5b JEW
and the other with B = 8b. In Fig. 6, the dashed curve and +ng(z +7) —ni(e + BiFC+ )2 (22)
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Fig. 7. Combining multiple baseline stereo pairs.

By taking the Taylor expansion about ¢ = ¢, up to the linear
terms, we obtain

fl@+BiF(( = () +5) = f(z+1) + BiF(C = ¢) f (@ + ).

(23)
Substituting this into (22), we can approximate e¢(;)(x, {) near
¢, by a quadratic form of ¢:

eciy(@ Q) m Y (=BiF(( = ) f (z +7)
JEW
+no(z + j) — ni(z + BiFC + ))?
= BfF?a(z)(¢ - ¢;)°

+ 2BlFbl(fL')(< —_ Cr) + Ci(i) (24)
where
a(@) =Y (f'(@+4)* 25)
jEw
bi(x) = Z f'(z+3)
JEW
(ni(z + BiF¢C + j) — no(z + 7)) (26)
ci(z) = > (ni(z + BiFC+ ) —no(z +§))*. (7

JEW
The estimated inverse distance @(i) is the value ¢ that makes
(24) minimum:
bi(z)

Ari =4Lr — . 28
Gy =6 BiFa(®) (28)
Since E[b;(z)] = 0, the expected value of the estimate ér(i)
is the correct value (,, but it varies due to the noise. The

variance of this estimate is

Vor) = )

BF?(a(z))?

2aﬁ

= s 29)

B?F?q(z)

Basically, this equation states that for the same amount of
image noise o2, the variance is smaller (the estimate is more
precise) as the baseline B; is longer or as the variation of
intensity signal a(x) is larger.
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We can follow the same analysis for e¢(12...n)(2, ¢) of (14),
which is the new evaluation function with multiple baselines.
Near (., it is

eca2--n) (@, ¢) = (Z B?)FQG(QT)(C - )
=1

+2F (Z Bibi(x)> C=¢)+ Z ci().
=1 i=1 (30)

The variance of the estimated inverse distance fr(lg,_.n)that
minimizes this function is

VarCoam) = oo @D)
ar(Cr12.-m)) = T B Fra(a)
From (29) and (31), we see that
1 _ 1 32)

i=1 Va"'(ér(i)) .

The inverse of the variance represents the precision of the
estimate. Therefore, (32) means that by using the SSSD-
in-inverse-distance with multiple baseline stereo pairs, the
estimate becomes more precise. We can confirm this charac-
teristic in Figs. 6 and 7 by observing that the curve around the
correct inverse distance becomes sharper as more baselines
are used.

Var(&r(l}--n))

III. EXPERIMENTAL RESULTS

This section presents experimental results of the multiple-
baseline stereo based on SSSD-in-inverse-distance with real 2-
D images. A complete description of the algorithm is included
in Appendix B.

The first result is for the “Town” data set that we showed in
Fig. 3. Fig. 8 is the distance map and its isometric plot with a
short baseline B = 3b. The result with a single long baseline
B = 9b is shown in Fig. 9. Comparing these two results, we
observe that the distance map computed by using the long
baseline is smoother on flat surfaces, i.e., more precise, but
has gross errors in matching at the top of the scene because
of the repeated pattern. These results illustrate the tradeoff
between ambiguity and precision. Fig. 10, on the other hand,
shows the distance map and its isometric plot obtained by the
new algorithm using three different baselines 3b, 6b, and 9b.
For comparison, the corresponding oblique view of the scene
is shown in Fig. 11. We can note that the computed distance
map is less ambiguous and more precise than those of the
single-baseline stereo.

Fig. 12 shows another data set used for our experiment. Figs.
13 and 14 compare the distance maps computed from the short
baseline stereo and the long baseline stereo; the longer baseline
is five times longer than the short one. For comparison, the
actual oblique view roughly corresponding to the isometric
plot is shown in Fig. 15. Although no repetitive patterns are
apparent in the images, we can still observe gross errors in
the distance map obtained with the long baseline due to false
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®)

Fig. 8. Result with a short baseline B = 3b: (a) Distance map; (b) isometric
plot of the distance map from the upper left corner. The matching is mostly
correct but very noisy.

matching. In contrast, the result from the multiple-baseline
stereo shown in Fig. 16 demonstrates both the advantage
of unambiguous matching with a short baseline and that of
precise matching with a long baseline.

Fig. 17(a) and (b) shows one of the real outdoor scenes to
which the multiple-baseline stereo technique has been applied.
The distance to the front object (curb) is roughly 20 m, and
it is another 8 m to the building wall. We used a Sony CCD
camera with a 50-mm lens and captured six images (five stereo
image pairs) by moving the camera horizontally. The baseline
between the neighboring camera positions is 1.9 ¢cm so that the
disparity is of the order of a few pixels (less than 15 pixels
for the image pair with the longest baseline). Fig. 17(c) is
the distance map obtained; we used a 9 x 9 window for SSD
computation and used DOG-filtered images as input rather than
the original intensity images in order to compensate for the
change in sunlight during the data collection session. Pebbles
on the road in front of the curb are detectable in the map,
and the occlusion edges of the sign board are very sharp.
Naturally, range measurements are noisy along the top edge
of the curb, which is mostly horizontal. Note that the map is
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correct distance

wrong
distance

®)

Fig. 9. Result with a long baseline B = 9b: (a) Distance map; (b) isometric
plot. The matching is less noisy when it is correct. However, there are many
gross mistakes, especially in the top of the image where, due to a repetitive
pattern, the matching is completely wrong.

the direct output of the stereo algorithm with no smoothing or
postprocessing applied.

During the experiments with this and other scenes, we found
that we invariably obtained better results by using relatively
short baselines. As seen in Fig. 17(a) and (b), the disparity
is. typically only 10 to 15 pixels, even for the closest objects
in the image pair with the largest baseline. This is somewhat
surprising since for precision, we anticipated that we would
need much longer baselines, at least for one or two pairs.
What is happening here seems to be the following. When
the baselines become longer, the effect of photographic and
geometric distortions, as well as occlusions, become severe.
Use of the shorter baselines generally decreases precision but
alleviates these problems, making the SSD functions show
more consistent behavior. Yet, since we accumulate multiple
observations, sufficient precision is still achievable. This is, in
fact, an advantage of the method since it means fewer occluded
parts in the final range map, and less computation as well,
since the range of SSD computation is shorter. Moreover, after
finding the unique minimum position of the SSSD function, we
can compute the minimum positions of each individual pair’s
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Fig. 10. Result with multiple baselines B = 3b, 6b, and 9b: (a) Distance
map; (b) isometric plot. Compared with Figs. 8(b) and 9(b), we see that the
distance map is less noisy and that gross errors have been removed.

Fig. 11.

Oblique view.

SSD functions near the overall minimum, their curvature at
their minimums, and finally, their minimum values. We have
found some indication that these can be used to evaluate the
uncertainty of the correctness of the matching and, further,
to classify the situation into occlusion, terminal edges, and
specular reflections. We are investigating these issues further
[17].

Fig. 12. “Coal mine” data set, long-baseline pair.

IV. CONCLUSIONS

In this paper, we have presented a new stereo matching
method that uses multiple baseline stereo pairs. This method
can overcome the tradeoff between precision and accuracy
(avoidance of false matches) in stereo. The method is rather
straightforward; we represent the SSD values for individual
stereo pairs as a function of the inverse distance and add
those functions. The resulting function (the SSSD-in-inverse-
distance) exhibits an unambiguous and sharper minimum at
the correct matching position. As a result, there is no need for
search or sequential estimation procedures.

The key idea of the method is to relate SSD values to the
inverse distance rather than the disparity. As an afterthought,
this idea is natural. Whereas disparity is a function of the
baseline, there is only one true (inverse) distance for each
pixel position for all of the stereo pairs. Therefore, there
must be a single minimum for the SSD values when they
are summed and plotted with respect to the inverse distance.
We have shown the advantage of the proposed method in
removing ambiguity and improving precision by analytical and
experimental results.

APPENDIX A
SSSD-IN-INVERSE DISTANCE FOR AMBIGUOUS PATTERN

Proposition: Suppose that there are two and only two
repetitions of the same pattern around positions = and z + a



OKUTOMI AND KANADE: MULTIPLE BASELINE STEREO

(b)

Fig. 13. Result with a short baseline: (a) Distance map; (b) isometric plot
of the distance map viewed from the lower left corner.

where a # 0 is a constant, that is, for j € W

flze+7)=f(€+j), ifandonlyif{ =z or{=z+a.
(33)
Then, if By # Bs, for V¢, ¢ # ¢

Elecaz(z, Q)] = z (f(z+ )
JEW
~ f(z + BiF(¢~ G) +3))°
+ ) (fle+5)
JEW
— f(@+ BaF(C = ) +4))2 + 4Nyoy
> ANyo% = Elecan(z, &) (34
Proof: Tentatively suppose that for 3y, (¢ # (r
S (flz+4) - fl@+ BiF((s = &) +0))°
Jjew
+ > (fl@+j) = f(z + BoF (s = G) +4))% = 0. (35)
JEW
Then, it must be the case that
flz+7) = flz+a1+7)
and  f(z+j) = f(z + a2 +j) (36)
for j € W, where

a1 = BiF(C - G)
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(®)

Fig. 14. Result with a long baseline: (a) Distance map; (b) isometric plot.

Fig. 15.

Oblique view.

ay = BaF((s = ().
Since By # By and (. # (r
a1 # as. 37
Therefore, we have

e +3)=f€+3),

Since this contradicts assumption (33), (35) does not hold. Its
left-hand side must be positive. Hence, (34) holds.

for £ = x, x + ay, or z + as. (38)
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®)
Fig. 16. Multiple baselines: (a) Distance map; (b) isometric plot.

APPENDIX B
MULTIPLE-BASELINE STEREQ ALGORITHM

We present a complete description of the stereo algorithm
using multiple-baseline stereo pairs. The task is, given n stereo
pairs, find the ¢ that minimizes the SSSD-in-inverse-distance
function

n

SSSD(x,¢) =Y Y (fo(z+j)— fi(z+B:F(+j))%. (39)

i=1jEW

We will perform this task in two steps: one at pixel resolution
by minimum detection and the other at subpixel resolution by
iterative estimation.

Minimum of SSSD at Pixel Resolution

For convenience, instead of using the inverse distance, we
normalize the disparity values of individual stereo pairs with
different baselines to the corresponding values for the largest
baseline. Suppose B; < By < --- < B,. We define the
baseline ratio R; such that

B;
R, = B (40)
Then
BiF( = R;B,F( = Rid( 41

~—— building wall

round bush

road

Fig. 17. Result with a real outdoor scene: (a),(b) Long baseline pair of
images; (c) isometric plot of the distance map.

where d(,) is the disparity for the stereo pair with baseline
B,,. Substituting this into (39)

SSSD(z,dm)) = > > (folz+3) — filz + Ridimy +5))%.
i=1jeW

(42)
We compute the SSSD function for a range of disparity values
at the pixel resolution and identify the disparity that gives the
minimum. Note that pixel resolution for the image pair with
the longest baseline (B,,) requires calculation of SSD values
at subpixel resolution for other shorter baseline stereo pairs.

Iterative Estimation at Subpixel Resolution

Once we obtain disparity at pixel resolution for the longest
baseline stereo, we improve the disparity estimate to subpixel
resolution by an iterative algorithm presented in [12] and [18].
For this iterative estimation, we use only the image pair fo(x)
and f,(z) with the longest baseline. This is due to a few
reasons. First, since the pixel-level estimate was obtained by
using the SSSD-in-inverse-distance, the ambiguity has been
eliminated, and only improvement of precision is intended at
this stage. Second, using only the longest-baseline image pair
reduces the computational requirement for SSD calculation
by a factor of n and yet does not degrade precision too
significantly.

In the experiments shown in Section III, we used the
following algorithm for subpixel estimation: Let dy(,) be the
initial disparity estimate obtained at pixel resolution. Then, a
more precise estimate is computed by calculating the following
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two quantities:
Adn) =

Y jew (fo(z +7) = fu(z + dom) + §)) fr (2 + dogn) + 7)
Yiew (Fn(@ + domy + ))?

@3)
202
S o (@ + dogy T “9

2 -
Tade,) =

The value AJ(n) is the estimate of the correction of the
disparity to further minimize the SSD, and aidw is its
variance. We iterate this procedure by replacing do(,) by

dogny  dogn) + Ad(n) 45)

until the estimate converges or up to a certain maximum
number of iterations.
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