
Exercise: Diversity Preservation in Monte-Carlo
Localization

August 11, 2010

1 Introduction

Monte-Carlo Localization (MCL) is a probabilistic method to estimate the position of
a robot based on the robot’s sensors readings and its odometry. MCL uses a Particle
Filter for the estimation. A particle filter represents the probability distribution by a
set of particles. The density of particles represents the probability. In Monte-Carlo
Localization, a map of the environment is known. The robot’s sensor information is
used to determine the most likely position in the map.

A Participle Filter shows remarkable similarities with a Genetic Algorithm: The fitness
of every participle is determined by the resemblance of the robot’s observation and
the expected observation, the fittest particles survive and reproduce, and mutation is
applied in the form of noise on the transition model.

Initially, when nothing is known about the position of the robot, the particles are ran-
domly distributed over the map. Every particle has a x- and y-position and an orien-
tation. The position of the robot is then estimated by iteratively going through three
steps:

• Step 1: The robot’s displacement since the last time step is measured using its
odometry. The same transition (position and orientation) is applied to all the
particles, with the addition of translational and rotational noise.

• Step 2: The probability of every particle is calculated by comparing the robot’s
sensory observation to the expected observation. This expected observation is
calculated for every particle using the map of the environment. This is the ob-
servation that the robot is expected to make when being at the position of the
particle. Some uncertainty in the sensor model is taken into account.

• Step 3: The particle population is resampled based on the probabilities of the
particles. Particles with higher probabilities have a higher chance to end up in the
new population. Improbable particles will likely by erased from the population.

1



However, there is a problem with the standard Particle Filter and therefore with Monte-
Carlo Localization. This is the problem of premature convergence in the case of am-
biguous situation, and thus multiple possible solutions to the estimation problem. Due
to genetic or random drift, the particle population will quickly converge to one of the
solutions. Since this solution might be the incorrect solution, this premature conver-
gence is not desirable. The genetic drift occurs because of the randomness in the re-
sampling function and the competition between particles of different solutions due to
the limited number of resources, that is, the limited number of particles in the popu-
lation. This causes that particles in one niche can replace particles in another niche,
therefore weakening the other niche.

Within the fields of Theoretical Biology and Genetic Algorithms, the phenomenon
of genetic drift has been studied. This has resulted in a number of so-called nich-
ing methods to preserve the diversity in the particle population. The key idea of the
niching method is to prevent competition between particles of different solutions (in
biology called niches) or to add a balancing force that counteracts the random drift.
In [Kootstra and de Boer, 2009], the application of the niching methods to solve the
problem of premature convergence in MCL has been studied.

2 Exercise

The Java program Localization.class in the directory exercise_2 imple-
ments a simple simulator of a robot driving through an environment. The position of
the robot is estimated using Monte-Carlo Localization. The program can be run with
java Localization. In manual.html you can read a short description of the
different inputs and buttons of the program.

• Use the ambiguous world without a niching method and run the Monte-Carlo
Localization (MCL). Although the world is highly symmetric and provides four
ambiguous situations, the particle filter will soon loose one of the solutions, and
will eventually converge to a single solution. The reason for this is the random
drift, caused by the randomness in the sampling process.

• Restart the simulation with different number of particles in the population. See
what happens

• Randomly distributing a proportion of the particles over the environment is a
good method to recover from a kidnap (try!). It is sometimes proposed as a
method to preserve diversity in the population. See if that is the case.

• To truly preserve diversity, a number of niching methods have been proposed
[Kootstra and de Boer, 2009]. One of the niching methods is implemented in
this version of the simulation, the closest-of-the-worst method. It replaces the
normal resampling method with a method that tries to avoid competition be-
tween different niches (solutions). It is doing that by biasing towards replacing
nearby particles. Run the MCL with this niching method. Are the four solutions
maintained?

2



• The method has a problem with free particles, particles that are not considered
for replacement, although their probability is low. Look at the algorithm (either
in the paper on in the function resampleUsingClosestOfTheWorst()
in Localization.java (line 990)), and try to explain the free particles. Also
suggest a solution to the problem.

You will now implement another niching method to preserve the diversity. Both sharing
and frequency dependent selection alter the original probability value so that smaller
groups have a fitness advantage. This will produce a balancing force that eliminates
the genetic drift. The fitness advantage is based on the distance between the particles.
Particles that have a low average distance are likely to be in a larger group and therefore
get a fitness disadvantage. Particles with a high average distance are more isolated and
therefore receive an advantage.

• Open Localization.java.

• The class Hypotheses implements the particle filter (a particle is sometimes
termed an hypothesis). The main cycle is in the function nextCycle() (line
1082). It consists of first applying the transition model to the particles to move
the particles in accordance with the robot. Next the sensor model is applied
to calculate the probabilities of every particle based on the robot’s sonar read-
ings. Finally the particles are resampled. The probabilities are calculated in
getProbabilities() (line 856).

• We will implement frequency dependent selection to solve the premature con-
vergence of the particle filter. Read the about it in the method section in the
[Kootstra and de Boer, 2009] (kootstra09ras.pdf in the exercise directory).

• We will Implement the frequency-dependent selection method in the function
applyMyNichingMethod() (line 848). First calculate the distance of every
particle to every other particle. You can use ((Hypothesis)hypotheses.get(i)).pos
to get the particles position. This will give a Position object with fields x, y,
and a. You can compile the code with javac Localization.java.

• Determining the sharing of a particle by considering the distance to all other
particles results in a quadratic complexity of the algorithm with respect to the
number of particles. Good results can however be obtained by estimating the
sharing by only considering the distance to a random subset of all the particles.
Experiment with the size of the subset and see what gives good diversity preser-
vation while being computationally efficient.

• Load the ’complex’ world and see how the particle filter with niching method
behaves. The diversity maintaining force can result in a ghost cluster. This is not
desirable in non-symmetric environments. However, you can see that the ghost
clusters are not very stable over time, because of inconsistencies with the robot’s
observations.

3



• Design and implement a method to deal with the ghost clusters. Make sure that
the desirable diversity-maintaining abilities in the symmetrical world don’t go
lost.

References

[Kootstra and de Boer, 2009] Kootstra, G. and de Boer, B. (2009). Tackling the pre-
mature convergence problem in monte-carlo localization. Robotics and Autonomous
Systems, 57(11):1107–1118.

4


