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SE-100 44 Stockholm, Sweden
Email: {frintrop/patric/hic}@nada.kth.se

Abstract— In this paper, we introduce a new method to
automatically detect useful landmarks for visual SLAM. A
biologically motivated attention system detects regions of interest
which “pop-out” automatically due to strong contrasts and the
uniqueness of features. This property makes the regions easily
redetectable and thus they are useful candidates for visual land-
marks. Matching based on scene prediction and feature similarity
allows not only short-term tracking of the regions, but also
redetection in loop closing situations. The paper demonstrates
how regions are determined and how they are matched reliably.
Various experimental results on real-world data show that the
landmarks are useful with respect to be tracked in consecutive
frames and to enable closing loops.

I. INTRODUCTION

Self localization is a key competence for an autonomous
mobile robot and has been a topic for much research within
the robotics community over the years. Two main paradigms
can be identified, metric [1], [2], [3] and topological [4],
[5], [6] localization approaches. In the metric methods, the
robot position is represented by coordinates in some coordinate
system whereas in the topological methods the robot position
is defined to be at some place in the topological graph. Such
a place can be for example a room or some functional unit
such as a copying machine. For the topological methods, one
of the most challenging problems is to be able to recognize
that the robot has moved from one place to another. Several
different techniques for place recognition have been suggested,
for example omnidirectional vision [6], a combination of sonar
and vision [5], or AdaBoost applied to features extracted from
laser range data to classify places [7].

An active area of research in mobile robotics is simul-
taneous localization and mapping (SLAM), where a map
is autonomously constructed of the environment. Obviously,
SLAM is closely related to localization and has been ap-
proached using both topological and metric methods. SLAM
for indoor settings based on laser scanners is today considered
a mature technology. However, the laser scanner is much too
expensive for many applications. Therefore and because of
the high amount of information offered by camera images,
the focus within the community has shifted towards using
visual information instead [8], [9], [10], [11]. One of the key
problems in SLAM is loop closing, i.e. the ability to detect
when the robot is revisiting some area that has been mapped
earlier. This is similar to the problem of place recognition
faced in the topological approaches to localization.

To perform SLAM based on visual sensors, landmarks have
to be detected in the environment. A key characteristic for
a good landmark is that it can be reliably detected, that
means that the robot is able to detect it over several frames.
Additionally, it should be redetectable when the same area
is visited again, that means the detection has to be stable
under viewpoint changes. Often, the landmarks are selected
by a human expert or the kind of landmark is determined
in advance. Examples are localization based on ceiling lights
[12] or on SIFT feature [13]. As pointed out by [14], there is
a need for methods which enable a robot to choose landmarks
autonomously. A good method should pick the landmarks
which are best suitable for the current situation.

In this paper, we turn the attention to computational visual
attention systems [15], [16], [17]. They select regions that “pop
out” in a scene due to strong contrasts and uniqueness, e.g.,
the famous black sheep in a white herd. The advantage of
these methods is that they determine globally which regions in
the image discriminate instead of locally detecting predefined
properties like corners. Some systems additionally integrate
previous knowledge (top-down information) into the computa-
tions [18], [17]. This enables a better redetection of landmarks
when presuming to revisit a known location. Applications of
visual attention systems are found in object recognition [19],
image segmentation [20], and active vision [21].

Attention methods are well suited for selection of regions
of uniqueness and thus good landmark candidates, yet the
application of attention systems to landmark selection has
rarely been studied. Two existing approaches are [22], in which
landmarks are detected in hand-coded maps, and [23], in
which a topological map is build. The only approach we are
aware of which uses an approach similar to a visual attention
system for SLAM, is presented in [10]. They use a saliency
measure based on entropy to define important regions in the
environment primarily for the loop closing detection in SLAM.
The map itself is built using a laser scanner though.

In this paper, we introduce a new method to detect useful
landmarks for visual SLAM based on the visual attention
system VOCUS [17]. The focus of the paper is on the detection
of landmarks, on tracking of landmarks over frames, and on
the ability to detect loop closing situations. We evaluate the
stability of the regions of interest (ROIs) detected by VOCUS,
and show that ROIs are very stable, are easily tracked over
many frames even without using position information and are
well suited to be redetected in loop closing situations.



Fig. 1. Attentional landmark selection for visual SLAM

II. SYSTEM OVERVIEW

In this section, we give an overview over the architecture
in which the landmark detection is embedded (see Fig. 1).
The main components are the robot which provides camera
images and odometry information, a landmark detector to
create landmarks, a database to store the landmarks, and a
SLAM module to build a map of the environment.

When a new frame from the camera is available, the motion
of the camera since the last frame if first checked . If there
was not enough movement (here more than 3cm translation
or 1◦ rotation), the frame is ignored. Otherwise, the frame is
provided to the landmark detector. The reason for ignoring
frames with too little motion in between is that we want
to assess the quality of landmarks and thus want to analyze
images taken from different view points.

The landmark detector consists of a ROI predictor which
predicts the position and appearance of landmarks depending
on previous frames and on position estimations from the
SLAM module, a ROI detector which redetects predicted ROIs
and finds new ROIs based on the visual attention system
VOCUS, a matching buffer which stores the last n frames,
performs matching of the ROIs in these frames and creates
landmarks from matched ROIs, and a filter module which
filters out low quality landmarks.

The landmarks which pass the filter are stored in the
database and provided to the SLAM module which performs
the estimate of the position of landmarks and integrates the
position into the environmental map. When old landmarks are
redetected, the landmark position estimates from the SLAM
module are used to narrow down the search space in the
database.

The focus in this paper will be on the detection and tracking
of landmarks, therefore the landmark detector is explained
most detailed here. Special emphasis is on the detection
of ROIs (ROI detector) and on the creation of landmark
(matching buffer). Details about the robot and the SLAM
architecture can be found in [11].

Fig. 2. The visual attention system VOCUS

III. ROI DETECTION WITH VOCUS

The detection of regions of interest (ROIs) is performed
with VOCUS (Visual Object detection with a CompUtational
attention System) [17]. This system differs from most other
ones by the ability to consider target knowledge (top-down
information) to enable goal-directed search. It consists of
a bottom-up part and a top-down part; global saliency is
determined from both cues (cf. Fig. 2).

The bottom-up part detects salient image regions by com-
puting image contrasts and uniqueness of a feature, e.g., a
red ball on green grass. The feature computations for the
features intensity, orientation, and color are performed on 3
different scales with image pyramids. The feature intensity
is computed by center-surround mechanisms [17]; on-off and
off-on contrasts are computed separately. After summing up
the scales, this yields 2 intensity maps. Similarly, 4 orientation
maps (0 ◦, 45 ◦, 90 ◦, 135 ◦) are computed by Gabor filters and
4 color maps (green, blue, red, yellow) which highlight salient
regions of a certain color (details in [17]). Each feature map
X is weighted with the uniqueness weight W(X) = X/

√
m,

where m is the number of local maxima that exceed a thresh-
old. This weighting is essential since it emphasizes important
maps with few peaks, enabling the detection of pop-outs. After
weighting, the maps are summed up first to 3 conspicuity maps
I (intensity), O (orientation) and C (color) and finally, after
again weighting for uniqueness, to the bottom-up saliency map
Sbu = W(I) +W(O) +W(C) (cf. Fig. 4, top left).

In top-down mode, the system aims to detect a target, i.e.,
input to the system is the image and some target information,
provided as a feature vector ~v. This vector is learned from a
region which is provided manually or automatically; in this
application it is determined automatically from a most salient
region (MSR) of Sbu (see below). In search mode, the system
multiplies the feature and conspicuity maps with the weights
of ~v. The resulting maps are summed up, yielding the top-
down saliency map Std (cf. Fig. 4, bottom left). Finally, Sbu

and Std are combined by: S = (1− t) ∗ Sbu + t ∗ Std, where



Feature vector ~v
intensity on/off 0.11
intensity off/on 7.92
orientation 0 ◦ 2.36
orientation 45 ◦ 6.82
orientation 90 ◦ 7.32
orientation 135 ◦ 8.48
color green 5.32
color blue 2.97
color red 0.73
color yellow 0.19
conspicuity I 4.99
conspicuity O 5.70
conspicuity C 2.52

Fig. 3. Left: image with most salient region (MSR). Right: feature vector
for the MSR.

t determines the contributions of bottom-up and top-down.
Fig. 4 shows the differences of bottom-up and top-down

saliency: the bottom-up saliency map highlights all regions
which might be of interest, regardless of a certain target. It
can be used to redetect a region without actively searching
for it. The top-down map shows much higher values for the
target regions. It is especially well suited to actively search
for a target.

In both bottom-up and top-down mode, the MSRs in S are
determined the same way: first the local maxima in S (seeds)
are found and second all neighboring pixels over a saliency
threshold (here: 25% of the seed) are detected recursively
with region growing (Fig. 4, col. 2). For simplicity, we use
the rectangle determined by height and width of the MSR as
region of interest (ROI) (cf. Fig. 8). Furthermore, we ignore
MSRs on the borders of images, since these are not stable
when the viewpoint changes.

For each MSR, a feature vector ~v with (2 + 4 + 4 + 3 =
13) entries (one for each feature and conspicuity map) is
determined. It describes the values of a map in this region
compared with the values in the rest of the image. The feature
value vi for map i is the ratio of the mean saliency in the
target region m(MSR) and in the background m(image−MSR):
vi = m(MSR)/m(image−MSR). This computation does not
only consider which features are the strongest in the target
region, it also regards which features separate the region best
from the rest of the image.

Fig. 3 shows an MSR and the corresponding feature vector
~v. The values of ~v show that the region is dark on a bright
background (intensity off/on), that the vertical orientation is
stronger than the horizontal one, and that generally intensity
and orientation are more important than color (conspicuity
weights I, O, C). Although the target is black on a white
background, there are values for the color maps. This results
from the camera, which produces slightly reddish images.
Therefore, the background wall appears slightly red too,
resulting in higher values for green and blue and lower for
red and yellow for a black target.

The feature computations are efficiently performed on in-
tegral images [24]. After once creating an integral image in

Fig. 4. Saliency maps (top, left: Sbu, bottom, left: Std) and MSRs in a
loop closing example: Top: scene at beginning of sequence. Bottom: revisited
scene, 592 frames later, searching for the black waste bin with top-down
attention.

Fig. 5. The matching buffer contains the last n frames (here: n = 20).
New frames enter the buffer on the right. Each frame contains several ROIs
(rectangles inside the frames). If the buffer matches new ROIs successfully
to old ones, landmarks are created (curved lines between ROIs).

linear time with respect to the number of pixels, a rectangular
feature value of arbitrary size is computed with only 4 refer-
ences. This results in a fast computation (50ms for 400× 300
pixel image, 2.8GHz) that enables real-time performance.

IV. THE MATCHING BUFFER

The matching buffer is a structure which stores the last n
frames (here: n = 20). This buffer provides a way to determine
which landmarks are stable over time and thus good candidates
to use in the map. The output from the matching buffer is thus
delayed by n frames but in return quality assessment can be
utilized before using the data.

Fig. 5 shows the matching buffer. New frames enter the
buffer on the right and each frame contains the ROIs detected
by VOCUS. The matching buffer matches ROIs between
frames, appends them to existing landmarks or creates new
landmarks when the ROIs do not fit to existing ones. The
figure shows three different examples of matching: on the top,
a ROI is matched to the last ROI of an existing landmark.
In the middle, a ROI is matched to a single ROI from the
previous frame and a new landmark is created. The lowest
ROI was not detected in the previous frame (frame n−1), but
in the frame before (frame n− 2); it belonged to an existing
landmark. The gap is ignored and the ROI is appended to the
landmark.



A. Matching ROIs

The matching is performed not only between consecutive
frames, but allows for gaps of several (here: 2) frames where
a ROI is not found. This is necessary, because ROIs are
sometimes not detected in each frame. We call all the frames
that are at an acceptable matching distance close frames.

The matching is based on two criteria: proximity and
similarity. First, the ROI in the new frame has to be within a
close area around the predicted point position from the old
frame. Secondly, the similarity of the ROIs is determined
considering the size of the ROIs and the similarity of the
feature values.

The position of a ROI in a new frame is predicted by
considering the relative motion of the camera between the old
and the new frame. Provided we have an estimate of how
the camera has moved between frames, we can predict where
ROIs seen before should be now. Let us consider a camera
moving at velocity ṙ which is the result of an angular rotation
velocity ω and translational velocity T in a static environment.
In relation to the camera, a 3D point r = (X,Y, Z)>moves
as

ṙ = −T − ω × r (1)

or explicitly
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Combining Eq. 1 and Eq. 4
(

ẋ
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If we assume that the robot is moving on an approximately
planar surface, the effect of rotations around X and Z axes as
well as the effect of translation along Y axis can be neglected.

Next, the similarity of the ROIs is determined depend-
ing on the size of the ROI and on the similarity of the
feature vector. We set the allowed deviation in width and
height of the ROI to 10 pixels each to allow some vari-
ations. This is useful, because the ROIs differ sometimes
slightly in shape depending on image noise and illumination
variations. Additionally, the Euclidean distance between two

Fig. 6. The robot environment and the driven trajectory.

feature vectors ~v1 and ~v2 is determined: d = ||~v1, ~v2|| =√
(v1,1 − v2,1)2 + ... + (v1,13 − v2,13)2. If d is below a cer-

tain threshold δ, the ROIs are said to match.
To summarize, if a ROI in a new frame is close to the

predicted position of an old ROI and the ROIs are similar
concerning size and feature values, the ROIs are said to match.

B. Creating Landmarks

A landmark is a list of ROIs which were matched suc-
cessfully (cf. Fig. 5). The procedure to create landmarks is
the following: if a new frame comes into the buffer, each of
its ROIs is matched to all existing landmarks corresponding
to close frames. That means, from each landmark the most
recently appended ROI is taken, it is checked if it belongs to
a close frame, and then it is matched to the new ROI. If the
matching is successful, the new ROI is appended to the end of
this landmark. Additionally, the new ROIs that did not match
any existing landmarks are matched to the unmatched ROIs
of the previous frame. If two ROIs match, a new landmark
is created consisting of these two ROIs. In a final step, we
consider the length of the resulting landmarks and filter out
those which consist of too few ROIs (here less than 5).

V. EXPERIMENTS AND RESULTS

The experiments were performed on a sequence of 658
images, obtained in a hallway by a robot driving as shown
in Fig. 6. They consist of three parts: first, we investigate how
the complexity is reduced by using attentional ROIs instead
of Harris corners. Second, we show how the matching of
ROIs can be used for tracking over consecutive frames and
investigate the matching quality with and without position
prediction. Finally, we show how the matching of ROIs can
be used in loop closing situations.

1) Complexity reduction: In the following table, we show
that by extracting attentional ROIs we get a strong complexity
reduction in comparison to the commonly used Harris corners:

Harris ROI
# pts in all frames 21258 2871
# landmarks 552 62

The first row shows that the number of extracted ROIs in all
frames was 86% smaller than the number of extracted Harris
points. The second row shows the number of landmarks the
points/ROIs were associated with. As a landmark, we consider
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Fig. 7. number of Harris corners and attentional ROIs per frame

points/ROIs which were tracked over at least 5 frames. It
shows that the ratio is similar: the amount of landmarks is
89% smaller for the ROIs than for the Harris corners.

The number of points per frame is depicted in Fig. 7. It
clearly shows that when using attentional ROIs, significantly
less points are selected per frame than when using only Harris
corners. Of course, both approaches could be adapted to detect
more or less points/regions since they are based on thresholds,
but VOCUS provides an order of ROIs depending on their
quality (saliency). That means, taking only k ROIs gives us
the best k ROIs which is not the case for Harris.

2) Tracking: Next, we investigate the matching of ROIs
between consecutive frames. To investigate the matching by
similarity independently from proximity, we first only consider
matching of the ROIs based on the size of the ROIs and the
similarity of the feature vector and second combine it with the
position prediction.

Fig. 8 shows the matching for an example case with δ = 1.7.
The top row shows all ROIs that were found in two consecutive
frames. In the first frame, 12 ROIs were found, in the second
10. Now, the matching depending on size and similarity of
the feature vector is performed. Remember, that we do not
consider any position information here. In the bottom row, the
5 ROIs which survive the matching are displayed. All of them
are correct.

We investigated how the number of landmarks, the length of
the landmarks (i.e. the number of associated ROIs), and the
quality of the matching (nb. false matches) depends on the
choise of the matching threshold δ (Tab. I, top). It shows that
the number of landmarks increases when δ increases as well
as the length of the landmarks, but on the other hand, when no
additional prediction is considered there are also significantly
more false matches.

Finally, we performed the same experiments with additional
position prediction (Tab. I, bottom). It shows that the false
matches are avoided and the matching is robust even for higher
values of δ. That means that for a high threshold combined
with position prediction, a higher amount of landmarks is
achieved while preserving the tracking quality. Fig. 9 shows an
example of tracking a ROI on a telephone over 20 frames. It
shows that although the viewpoint changes strongly, the track-
ing is stable and robust. We also tried to perform the matching
based only on the position prediction without considering the

Fig. 8. Top: all found ROIs in two consecutive frames. Bottom: The ROIs
which were matched between the frames only depending on their feature
vector. All matches are correct.

matching without prediction:
Threshold # landm. # ROIs # ROIs/Landmark (av) # false m.

1.7 62 571 9.2 1
2.0 73 730 10.0 7
2.5 88 957 10.9 15
3.0 102 1109 10.9 42
5.0 130 1568 12.0 147

matching with prediction:
Threshold # landm. # ROIs # ROIs/Landmark (av) # false m.

1.7 61 566 9.3 0
2.0 73 724 9.9 0
2.5 88 955 10.9 0
3.0 98 1090 11.1 0
5.0 117 1415 12.1 0

TABLE I
MATCHING OF ROIS FOR DIFFERENT THRESHOLDS δ

ROI similarity at all, but it turned out that nested ROIs can
not be distinguished any more. That means, the results are still
good, but the shape of the ROIs is less stable. Therefore, we
recommend using both criteria for matching.

3) Loop closing: In the next experiment, we investigate the
matching quality in loop closing situations. In our experimen-
tal setup, the robot drives 2.5 times in a circle. That means,
most of the visited regions appear again after a while, a perfect
setting to investigate the ability to close loops.

We proceed as follows: for each ROI that is detected in
a new frame, we match to all ROIs from all landmarks that
occurred so far. We used a tight threshold for the matching
(δ = 1.7), assuming that no position information is avail-
able for the ROIs. This case corresponds to the “kidnapped
robot problem”, the most difficult version of loop closing. If
additional position information from odometry is added, the
matching gets more precise, false matches are avoided and the
threshold might be chosen higher.

In these experiments, the system attempted to perform



Fig. 9. Tracking of a landmark after 1, 10, 15, 20 frames with δ = 5.0 and additional position prediction.

Fig. 11. False matches in loop closing situations: the first row shows a ROI
in a current frame, the second row shows a previously stored ROI the current
ROI was matched with. The matched regions are associated wrongly since
they are highly ambiguous.

974 256 matches between ROIs (all current ROIs were
matched to all ROIs of all landmarks that were detected so far).
Out of these possible matches, 646 were matched, 575 (89%)
of these matches were correct. Fig. 10 shows four examples of
correct matches, two examples of false matches are depicted
in Fig. 11.

The experiments show that the attentional ROIs are useful
landmarks which are both successfully tracked over consecu-
tive frames and suitable to be redetected after visiting an area
again from a different viewpoint.

VI. CONCLUSION

Image based localization is an emerging methodology that
has a significant potential for new types of robot applications.
To make image based localization tractable, there is a need to
detect major salient structures in the scene. In this paper, we
have presented a method for landmark selection based on a
biologically motivated attention system which detects salient
regions of interest. Scene prediction and similarity of features
are used to achieve stable matching results. The matching
shows to be successful not only in short-term tracking but
also in loop closing. The detection and matching method has

been tested in a SLAM scenario to demonstrate the basic
performance for in-door navigation.

The present work has been performed off-line and future
work is consequently going to consider an on-line evaluation.
In addition, there is a need to study the performance of the
method for loop closing and estimation in the presence of
significantly higher scene complexity.
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