
     Bag of Word: Place Recognition
Background 

We will use the bag-of-words (also known as bag-of-features, bag-of-visterms) model for object 
recognition. First of all, check the bag-of-words tutorial at http://people.csail.mit.edu/torralba/
shortCourseRLOC/index.html

Include the sift package in Matlab’s path: addpath(’../sift’);
• Have a look at the documentation

•In the remaining of the exercise, we will use images from the KTH-IDOL2 database, containing a 
sequence of images recorded by a robot driving through an office building. In exercise 1 of this 
summer school you downloaded two sequences from the database. We will work with those. Get 
the sequence information with: sequenceInfo = getIDOLSequenceInfo(’min_cloudy1’);

In this assignment, we will use bags-of-features to represent and recognize the place where the 
robot is. We will use the first sequence (‘min_cloudy1’) to learn the places and the second 
sequence (‘min_cloudy2’) to test the recognition. 

For the training phase, the first thing to do is to find the prototypical visual features, that is, the 
visual words in the dictionary that we will use for recognition. To do that, we take a large number 
of interest points found in the first sequence and cluster these into K clusters. This will give the K 
visual words. Once we have the words, we can make a signature for every image in the sequence. 
The signature is a frequency histogram of the visual words. So for every image, we need to count 
how often each of the K words appear in that image. We can then store the signatures of every 
image along with the place label (sequenceInfo(i).placeID). 

With all the signatures and place labels stored, we can try to recognize the place in the images in 
the second sequence. We use the same K words as in the training phase, and make a signature for 
the given images. By comparing that signature to all the learned signatures, we can find the 
nearest neighbor. This will give us the place label.

Calculate Features
We have pre-calculated all the SIFT interest points and detectors for the images in the database. 
There is a pointer to the file containing the SIFT descriptors in sequenceInfo(i).siftFileName. If you 
load the sift file, it will give you a matrix containing all the interest points found in the image. 
Every row of the matrix contains an interest point. The first columns give the xpos, ypos, scale, 
and orientation, followed by the 128 columns of the sift descriptor.  
• Make a large matrix where you store all the descriptors found in the sequence (excluding the xy 

pos and scale and orientation). Each descriptor should be stored in a row of the matrix. To 
prevent a too large matrix, use only every 10th image in the sequence.

Cluster Features
After you have all the descriptors, use k-mean clustering to cluster our descriptors. Use MATLAB’s 
kmeans function to cluster descriptors using different k values. Typically, a large number of 
clusters (e.g., 500, 1000, 2000) has been used in the literature. You need to experiment with the 
number of clusters with respect to the number of local features obtained in the training data.

Create the bag-of-words histograms (or signatures)
We need to map all the raw SIFT descriptor in an image to its visual word:
Each raw descriptor is assigned to the word vector (cluster center) it is nearest to in terms of 
Euclidean distance. [see provided dist2.m code for fast distance computations; note that 
[minvals, mininds] = min(D, [], 2); returns a vector containing the minimum value per 
row of the matrix D along with the column indices where each of the mins are found.]

http://people.csail.mit.edu
http://people.csail.mit.edu


The histogram which we will call the ‘signature’ for image I j is a k-dimensional vector: F(I j ) = 
[freq1, j , freq2, j ,..., freqk, j ], where each entry freqi, j counts the number of occurrences of the i-th visual 
word in that image, and k is the number of total words in the vocabulary. In other words, a single 
image’s list of n SIFT descriptors yields a k-dimensional bag-of-words histogram. [Matlab’s histc 
is a useful function].
Create a signature (histogram) for every image in the first sequence. Label every histogram with 
the label sequenceInfo(i).placeID so that you know which room the signature corresponds to.

Testing
Now go back and load the features for the other sequence getIDOLSequenceInfo(‘min_cloudy2’); 
This new set has not been trained on so it can be used for testing the technique for similarity. Now 
step through each image and using the same set of visual words computed on the previous 
sequence compute a histogram signatures for an image and measure that histograms distance to 
all the signatures computed from the previous step. Finding the minimum distance signature and 
its associated placeID gives you your classification for this new image. Compare that and the actual 
placeID from the structure to check for successful classification. Do this for all the images in the 
second sequence and calculate the success rate.


