
Diversity maintenance in particle filters

Gert Kootstra

Overview

  Particle filters for localization
  Similarities between particle filters and genetic

algorithms
  Problem of premature convergence
 Niching methods
  Experiments
 Results
 Conclusion

?

Particle filters

 A particle filter represents the probability
distribution with a set of particles

 Distribution can take any form
 Density of particle should approximate the

true distribution. True for

€

N ↑∞

Monte-Carlo localization

  In MCL, a particle filter is used to estimate the
position of the robot.

  Information used
  Map of the environment
  Sensory reading of the robot
  Action (motion) performed by the robot

Monte-Carlo localization

  Set of particles
  Each particle is a hypothesis about the location
  is the weight (probability) of that particle

  Start with random distribution of particles
  Iterative optimization process

1.  Apply motion model
2.  Apply sensor model
3.  Resample the particles

€

St = xt
i ,wt

i() | i =1,…,N{ }

€

xt
i

€

wt
i

€

xt+1
i = f xt

i ,ut
i()

€

wt+1
i = g xt+1

i ,zt
i()

Monte-Carlo localization

  Initial distribution: random

Monte-Carlo localization

 Applying motion model
  Next position of p’s based on motion
  Including noise to represent uncertainty

Monte-Carlo localization

 Applying sensor model
  Calculating the particle weights

Autonome Systemen

P=0.9 P=0.7 P=0.6

P=0.1

P=0.1
P=0.1

P=0.1

P=0.4

P=0.3

P=0.1

Calculate the weight
P(z|x3) using

Perception
of robot, z

‘Perception’
of particle zt

Monte-Carlo localization

 Resampling the particle population
  Weight-proportional sampling

P=0.9 P=0.7 P=0.6

P=0.1

P=0.1
P=0.1

P=0.1

P=0.4

P=0.2

P=0.1

Monte-Carlo localization

  Final distribution

Problem: premature convergence

Premature convergence

  Loss of diversity
 Makes the filter end up in a sub-optimal

solution
  Especially when observations lead to

ambiguous situations
  In symmetrical environments (many office buildings)
  With multiple solutions
  With noisy sensors

Random drift

 Reason: random (genetic) drift
  Consider 5 particles for solution A en 5 for B
  All the same weight
  This is what happens in the resampling process

Draw with
replacement

Random drift

  Two examples with 100 particles starting 50-50

Random drift

 Many examples: time to convergence

Premature convergence

 Reason for this drift
  The variance in the sampling method
  Population after sampling might not resemble the

weight distribution
  Particles in different regions compete for limited

resources (N particles in next generation)

 Variance of roulette-wheel sampling is
particular high 1

2
3
4
5
6

Stochastic universal sampling

  Stochastic universal sampling: lower variance

  Only one random number generator
  Less variance in sampling: ±1 particle
  Also faster

 However, premature convergence remains
  Demo

w0

1/N

Random pick

Particle filters vs genetic algorithms

  Same mechanism: iterative optimization

  Same problems and same solutions

Particle Filter Genetic Algorithm
Particles Individuals
Random initial distribution Random initial distribution
Motion model + noise Mutation (noise)
Transition model Fitness function
Resampling Reproduction (weight based)
Random drift Genetic drift

Diversity in natural systems

 What is the reason that in nature there are
many different species and not one due to
genetic drift?

 Two of the answers:
1.  No competition between different niches
2.  Fitness advantage for species with less members

(frequency-dependent selection)

  Niche
  Environment for particular species (food, temp,…)

1. No competition between niches

  Source of genetic drift
  competition between different niches for limited

resources

 But many species do not compete because of
different niches
  No competition for space, food, etc.

2. Frequency-dependent selection

  Predator-prey systems
  Consider two prey species

(mice, frogs) and one predator
(eagle)

  The predator has to specialize in
one of the two

  It obviously specializes in the
largest group

  This gives a fitness advantage to
the smaller group and
disadvantage to the bigger

2. Frequency-dependent selection

  Smaller groups have advantage
  Results in balance between group size

t=1 t=2 t=3

Niching methods in GA

 Terminology
  Niche Solution
  Limit resource Limit nr of individuals

  Solutions in GA field: Niching methods
  Crowding
  Sharing / Frequency dependent selection
  Local selection

Crowding / Closest of the Worst

 Apply motion and sensor model to all particles
 Crowding instead of the standard resampling:

  Select part (20%) of the population, the generation
gap, to reproduce using weight-proportional
selection, so selecting the more probably particles

Generation gap

Crowding / Closest of the Worst

  For every particle i in the generation gap
  A proportion (1%), the crowding factor, is randomly

sampled from the worst particles
  The nearest particle in the crowing factor is replaced by

particle i.

  Large groups: competition within the niche
  Small groups: change to get a particle from another group

Crowding factor
Nearest

Frequency dependent selection

 Apply motion and sensor model to all particles
 Adjust the weights

 

  Fitness advantage for small groups

 Resample normally

€

ˆ w t+1
i = wt+1

i ⋅ dist xt+1
i , rand_particple()

j=1

.2⋅N

∑

w=0.5 w=0.5 w=0.3 w=0.7

Local selection

 Different method
 The size of the particle population adapts to

the carrying capacity of the environment.
  No competition for limited resources
  A niche will maintain as many particles as suited for

the niche’s ‘fitness’.

  Every particle now has an amount of energy

Local selection

 Apply motion and sensor model to all particles
 Divide world in bins and count particles per bin
  For all particles

  Update energy of the particle:
  Reproduction or death based

on the amount of energy
  Make copy of particle and share energy
  Take particle out of the population

  Stable niche size when Ein=Eout

€

Ein
i = wt+1

i /wbin[xt+1
i]

€

Et+1
i = Et

i + Ein −Eout()

€

Et+1
i >θ

€

Et+1
i < 0

Experiments

 Test the algorithms in a highly symmetrical
environment
  Particle filter needs to maintain

all four possible solutions
  Subpopulations should be

compact
  Estimation error should be

small

 Demonstration

Results: Diversity maintenance

Results: Diversity maintenance

  Standard particle filter
  Poor diversity maintenance performance

  Crowding (closest of the worst)
  Best performance
  O(gg.cf.N2), in our example faster than the standard

  Frequency dependent selection
  Good performance
  O(χN2), little overhead

  Local selection
  Good performance
  O(N), but N varies somewhat

Results: Compactness

Results: Compactness

  Standard particle filter
  Most compact

 Crowding
  Not very compact and problem with loose particles

  Frequency dependent selection
  Compactness similar to particle filter

  Local selection
  Less compact

Results: Estimation error

Results: Estimation error

  Standard particle filter
  Best estimation (NB not taking premature

convergence into account)
 Crowding / Closest o/t Worst

  Very good estimation in both environments
  Frequency dependent selection

  Very good in ambiguous, but suffers from ghost
clusters in non-ambiguous environments

  Local selection
  Good estimation in both environments

Conclusions and discussion

  Premature convergence is a problem in particle
filters
  For localization, as demonstrated
  But also for particle filters used in SLAM (FastSLAM)

  Particle filters and genetic algorithms are very
similar

 Niching methods can successfully be used in PFs
  Problems of loose particles and ghost cluster

can be overcome

Questions?

  Kootstra, G. & de Boer, B. (2009) Tackling the Premature
Convergence Problem in Monte-Carlo Localization. Robotics
and Autonomous Systems 57(11): 1107-1118.

  kootstra@kth.se

?

Crowding

  for all particles i
  Apply motion and sensor model

  end
 
  for all particles i in Gt

 
 
 

 
  end

€

Gt ← SAMPLE St ,gg ⋅N()

€

ˆ S t ←worst_particles St , N / 3()

€

C ← uniform_sample ˆ S t ,cf ⋅N()

€

j← argmin
k∈C

dist i,k()()

€

pt
j ← pt

i

