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Particle filters

» A particle filter represents the probability
distribution with a set of particles

» Distribution can take any form

» Density of particle should approximate the
true distribution. True for N 1«



Monte-Carlo localization

» In MCL, a particle filter is used to estimate the
position of the robot.

» Information used
Map of the environment
Sensory reading of the robot
Action (motion) performed by the robot



Monte-Carlo localization

» Set of particles S, ={(x/,w;)li=1,...,N}
Each particle is a hypothesis about the location x!
w! is the weight (probability) of that particle

» Start with random distribution of particles

» Iterative optimization process
Apply motion model x! , = f(xj,uf)

Apply sensor model w;, , = g(xj+1 ,zj)
Resample the particles



Monte-Carlo localization

» Initial distribution: random




Monte-Carlo localization

» Applying motion model
Next position of p’s based on motion

Including noise to represent uncertainty
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Monte-Carlo localization

» Applying sensor model
Calculating the particle weights
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Monte-Carlo localization

» Resampling the particle population
Weight-proportional sampling




Monte-Carlo localization

» Final distribution




Problem: premature convergence




Premature convergence

» Loss of diversity

» Makes the filter end up in a sub-optimal
solution

» Especially when observations lead to
ambiguous situations
In symmetrical environments (many office buildings)
With multiple solutions
With noisy sensors



Random drift

» Reason: random (genetic) drift
Consider 5 particles for solution A en 5 for B
All the same weight
This is what happens in the resampling process
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Random drift

» Two examples with 100 particles starting 50-50
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Random drift

» Many examples: time to convergence

Nr cycles after when there is a hemogene population
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Premature convergence

» Reason for this drift
The variance in the sampling method

Population after sampling might not resemble the
weight distribution

Particles in different regions compete for limited
resources (N particles in next generation)
» Variance of roulette-wheel sampling is
particular high
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Stochastic universal sampling

» Stochastic universal sampling: lower variance
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Particle filters vs genetic algorithms

» Same mechanism: iterative optimization

Particle Filter Genetic Algorithm

Particles Individuals

Random initial distribution Random initial distribution

Motion model + noise Mutation (noise)

Transition model Fitness function

Resampling Reproduction (weight based)
Random drift Genetic drift

» Same problems and same solutions



Diversity in natural systems

» What is the reason that in nature there are
many different species and not one due to
genetic drift!

» Two of the answers:
No competition between different niches

Fitness advantage for species with less members
(frequency-dependent selection)

» Niche

Environment for particular species (food, temp,...)



1. No competition between niches

» Source of genetic drift

competition between different niches for limited
resources

» But many species do not compete because of
different niches
No competition for space, food, etc.




2. Frequency-dependent selection

» Predator-prey systems

Consider two prey species
(mice, frogs) and one predator
(eagle)

The predator has to specialize in
one of the two

It obviously specializes in the
largest group

This gives a fitness advantage to |
the smaller group and
disadvantage to the bigger




2. Frequency-dependent selection

» Smaller groups have advantage
» Results in balance between group size
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Niching methods in GA

» Terminology
Niche Solution
Limit resource Limit nr of individuals

» Solutions in GA field: Niching methods
Crowding
Sharing / Frequency dependent selection
Local selection



Crowding / Closest of the Worst

» Apply motion and sensor model to all particles

» Crowding instead of the standard resampling:

Select part (20%) of the population, the generation
gap, to reproduce using weight-proportional
selection, so selecting the more probably particles

O Generation gap



Crowding / Closest of the Worst

For every particle i in the generation gap

A proportion (1%), the crowding factor, is randomly
sampled from the worst particles

The nearest particle in the crowing factor is replaced by
particle i.
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Large groups: competition within the niche

Small groups: change to get a particle from another group



Frequency dependent selection

» Apply motion and sensor model to all particles
» Adjust the weights
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Fitness advantage for small groups
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» Resample normally



Local selection

» Different method

» The size of the particle population adapts to
the of the environment.
No competition for limited resources

A niche will maintain as many particles as suited for
the niche’s fitness’.

» Every particle now has an amount of energy



Local selection

» Apply motion and sensor model to all particles
» Divide world in bins and count particles per bin

» For all particles
Update energy of the particle: E| =w'  /wbin[x’,,]
Reproduction or death based E =E+(E,-E,,)
on the amount of energy

E!, >0 Make copy of particle and share energy
E;., <0 Take particle out of the population

» Stable niche size when E, =F_ .



Experiments

» Test the algorithms in a highly symmetrical
environment V e

» Particle filter needs to maintain
all four possible solutions @

» Subpopulations should be
compact

» Estimation error should be
small

» Demonstration



Results: Diversity maintenance
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Results: Diversity maintenance

» Standard particle filter
Poor diversity maintenance performance

» Crowding (closest of the worst)
Best performance
O(gg.cf.N?), in our example faster than the standard

» Frequency dependent selection
Good performance

O( x N?), little overhead

» Local selection
Good performance

O(N), but N varies somewhat



Results: Compactness
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Results: Compactness

» Standard particle filter
Most compact

» Crowding
Not very compact and problem with

» Frequency dependent selection
Compactness similar to particle filter

» Local selection
Less compact
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Results: Estimation error

» Standard particle filter

Best estimation (NB not taking premature
convergence into account)

» Crowding / Closest o/t Worst
Very good estimation in both environments

» Frequency dependent selection

Very good in ambiguous, but suffers from
in non-ambiguous environments

» Local selection
Good estimation in both environments



Conclusions and discussion

» Premature convergence is a problem in particle
filters

For localization, as demonstrated
But also for particle filters used in SLAM (FastSLAM)

» Particle filters and genetic algorithms are very
similar
» Niching methods can successfully be used in PFs

» Problems of loose particles and ghost cluster
can be overcome



Questions?

» Kootstra, G. & de Boer, B. (2009) Tackling the Premature
Convergence Problem in Monte-Carlo Localization. Robotics
and Autonomous Systems 57(11): 1 107-1118.

» kootstra@kth.se



Crowding

» for all particles i

Apply motion and sensor model
» end
» G, <= SAMPLE(S,,gg" N)
» for all particles i in G,

A

S
C < uniform_sample(gt,cf N )

< worst_particles(S,,N/3)

t

j < argmin(dist(i,k))

keC
pl < p,
» end



