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Particle filters 

 A particle filter represents the probability 
distribution with a set of particles 

 Distribution can take any form 
 Density of particle should approximate the 

true distribution. True for  
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Monte-Carlo localization 

  In MCL, a particle filter is used to estimate the 
position of the robot.  

  Information used 
  Map of the environment 
  Sensory reading of the robot 
  Action (motion) performed by the robot 



Monte-Carlo localization 

  Set of particles 
  Each particle is a hypothesis about the location   
     is the weight (probability) of that particle 

  Start with random distribution of particles 
  Iterative optimization process 

1.  Apply motion model 
2.  Apply sensor model 
3.  Resample the particles   
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Monte-Carlo localization 

  Initial distribution: random 



Monte-Carlo localization 

 Applying motion model 
  Next position of p’s based on motion 
  Including noise to represent uncertainty 



Monte-Carlo localization 

 Applying sensor model 
  Calculating the particle weights 
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Monte-Carlo localization 

 Resampling the particle population 
  Weight-proportional sampling 
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Monte-Carlo localization 

  Final distribution 



Problem: premature convergence 



Premature convergence 

  Loss of diversity 
 Makes the filter end up in a sub-optimal 

solution 
  Especially when observations lead to 

ambiguous situations 
  In symmetrical environments (many office buildings) 
  With multiple solutions 
  With noisy sensors 



Random drift 

 Reason: random (genetic) drift 
  Consider 5 particles for solution A en 5 for B 
  All the same weight 
  This is what happens in the resampling process 

Draw with  
replacement 



Random drift 

  Two examples with 100 particles starting 50-50 



Random drift 

 Many examples: time to convergence  



Premature convergence 

 Reason for this drift 
  The variance in the sampling method 
  Population after sampling might not resemble the 

weight distribution  
  Particles in different regions compete for limited 

resources (N particles in next generation) 

 Variance of roulette-wheel sampling is 
particular high 1 
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Stochastic universal sampling 

  Stochastic universal sampling: lower variance 

  Only one random number generator 
  Less variance in sampling: ±1 particle 
  Also faster 

 However, premature convergence remains 
  Demo 
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Particle filters vs genetic algorithms 

  Same mechanism: iterative optimization 

  Same problems and same solutions 

Particle Filter Genetic Algorithm 
Particles Individuals 
Random initial distribution Random initial distribution 
Motion model + noise Mutation (noise) 
Transition model Fitness function 
Resampling Reproduction (weight based) 
Random drift Genetic drift 



Diversity in natural systems 

 What is the reason that in nature there are 
many different species and not one due to 
genetic drift? 

 Two of the answers:  
1.  No competition between different niches  
2.  Fitness advantage for species with less members 

(frequency-dependent selection) 

  Niche 
  Environment for particular species (food, temp,…)   



1. No competition between niches 

  Source of genetic drift 
  competition between different niches for limited 

resources 

 But many species do not compete because of 
different niches 
  No competition for space, food, etc. 



2. Frequency-dependent selection 

  Predator-prey systems 
  Consider two prey species 

(mice, frogs) and one predator 
(eagle) 

  The predator has to specialize in 
one of the two 

  It obviously specializes in the 
largest group 

  This gives a fitness advantage to 
the smaller group and 
disadvantage to the bigger 



2. Frequency-dependent selection 

  Smaller groups have advantage 
  Results in balance between group size 

t=1 t=2 t=3 



Niching methods in GA 

 Terminology  
  Niche    Solution 
  Limit resource  Limit nr of individuals 

  Solutions in GA field: Niching methods 
  Crowding 
  Sharing / Frequency dependent selection 
  Local selection 



Crowding / Closest of the Worst 

 Apply motion and sensor model to all particles 
 Crowding instead of the standard resampling: 

  Select part (20%) of the population, the generation 
gap, to reproduce using weight-proportional 
selection, so selecting the more probably particles 

Generation gap 



Crowding / Closest of the Worst 

  For every particle i in the generation gap 
  A proportion (1%), the crowding factor, is randomly 

sampled from the worst particles 
  The nearest particle in the crowing factor is replaced by 

particle i.  

  Large groups: competition within the niche 
  Small groups: change to get a particle from another group 

Crowding factor 
Nearest 



Frequency dependent selection 

 Apply motion and sensor model to all particles 
 Adjust the weights 

    

  Fitness advantage for small groups 

 Resample normally 
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Local selection 

 Different method 
 The size of the particle population adapts to 

the carrying capacity of the environment. 
  No competition for limited resources 
  A niche will maintain as many particles as suited for 

the niche’s ‘fitness’. 

  Every particle now has an amount of energy 



Local selection 

 Apply motion and sensor model to all particles 
 Divide world in bins and count particles per bin 
  For all particles 

  Update energy of the particle:  
  Reproduction or death based 

on the amount of energy 
     Make copy of particle and share energy 
     Take particle out of the population 

  Stable niche size when Ein=Eout 
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Experiments 

 Test the algorithms in a highly symmetrical 
environment 
  Particle filter needs to maintain 

all four possible solutions 
  Subpopulations should be 

compact 
  Estimation error should be 

small 

 Demonstration 



Results: Diversity maintenance  



Results: Diversity maintenance  

  Standard particle filter 
  Poor diversity maintenance performance 

  Crowding (closest of the worst) 
  Best performance 
  O(gg.cf.N2), in our example faster than the standard 

  Frequency dependent selection 
  Good performance 
  O(χN2), little overhead 

  Local selection 
  Good performance 
  O(N), but N varies somewhat 



Results: Compactness 



Results: Compactness 

  Standard particle filter 
  Most compact 

 Crowding 
  Not very compact and problem with loose particles 

  Frequency dependent selection 
  Compactness similar to particle filter 

  Local selection 
  Less compact 



Results: Estimation error 



Results: Estimation error 

  Standard particle filter 
  Best estimation (NB not taking premature 

convergence into account) 
 Crowding / Closest o/t Worst 

  Very good estimation in both environments 
  Frequency dependent selection 

  Very good in ambiguous, but suffers from ghost 
clusters in non-ambiguous environments 

  Local selection 
  Good estimation in both environments 



Conclusions and discussion 

  Premature convergence is a problem in particle 
filters 
  For localization, as demonstrated 
  But also for particle filters used in SLAM (FastSLAM) 

  Particle filters and genetic algorithms are very 
similar 

 Niching methods can successfully be used in PFs 
  Problems of loose particles and ghost cluster 

can be overcome 



Questions? 

  Kootstra, G. & de Boer, B. (2009) Tackling the Premature 
Convergence Problem in Monte-Carlo Localization. Robotics 
and Autonomous Systems 57(11): 1107-1118. 

  kootstra@kth.se 
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Crowding 

  for all particles i 
   Apply motion and sensor model  

  end  
     
  for all particles i in Gt 

    
    
    

    
  end 
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