Image Filtering and Stereo

Multi-Camera Geometry

Multi-Camera Geometry

Photo Tourism Exploring photo collections in 3D

Noah Snavely Steven M. Seitz Richard Szeliski University of Washington Microsoft Research

SIGGRAPH 2006

Geometric Distortion

No distortion

Pincushion Distortions

Barrel Distortions

Camera Parameters

- Determine the intrinsic parameters of a camera (with lens)
- What are Intrinsic Parameters?
 - Focal Length f
 - Pixel size s_x , s_y (k_u , k_v)
 - Distortion coefficients k_1 , k_2 ...
 - Image center u_0 , v_0

 $lpha_u = k_u f$ $lpha_v = k_v f$

Coord. Of Point in the "World" frame

[Devy 2003]

$$\begin{pmatrix} su\\sv\\s \end{pmatrix} = M \begin{pmatrix} X_w\\Y_w\\Z_w\\1 \end{pmatrix} = I E \begin{pmatrix} X_w\\Y_w\\Z_w\\1 \end{pmatrix}$$

- M = Matrix of Perspective Projection
- I = Matrix of Intrinsic Parameters
- E = Matrix of Extrinsic Parameters (Rotation + Translation)

Locations in the image

Camera Calibration Toolbox for Matlab

<u>http://www.vision.caltech.edu/bouguetj/calib_doc/index.html</u>

Features in Computer Vision

- What is a feature?
 - Location of sudden change
- Why use features?
 - Information content high
 - Invariant to change of view point, illumination
 - Reduces computational burden

Image 1

Image 2

Feature 1 Feature 2

Feature 1

Feature 2

Feature N

Vision Algorithm

What makes for GOOD features?

- Invariance
 - View point (scale, orientation, translation)
 - Lighting condition
 - Object deformations
 - Partial occlusion
- Other Characteristics
 - Uniqueness
 - Sufficiently many
 - Tuned to the task

First Feature: Edge

- Depth discontinuity
- Surface orientation discontinuity
- Reflectance discontinuity (i.e., change in surface material properties)
- Illumination discontinuity (e.g., shadow)

How to find Edgo?

• Modify the pixels in an image based on some function of a local neighborhood of the pixels

Linear Filtering

- Linear case is simplest and most useful
 - Replace each pixel with a linear combination of its neighbors.
- The prescription for the linear combination is called the convolution kernel.

 $\begin{aligned} f(i,j) &= & g_{11} I(i-1,j-1) &+ & g_{12} I(i-1,j) &+ & g_{13} I(i-1,j+1) + \\ & g_{21} I(i,j-1) &+ & g_{22} I(i,j) &+ & g_{23} I(i,j+1) &+ \\ & g_{31} I(i+1,j-1) &+ & g_{32} I(i+1,j) &+ & g_{33} I(i+1,j+1) \end{aligned}$

$$f[m,n] = I \otimes g = \sum_{k,l} I[m-k,n-l]g[k,l]$$

- Example on the web: www.jhu.edu/~signals/convolve
- Matlab function: conv(ID) or conv2(2D)

/9	1/9	1/9
/9	1/9	1/9
/9	1/9	1/9

0.0	0.0	0.0	0.0
4	4	4	4
0.0	0.0	0.0	0.0
4	4	4	4
0.0	0.0	0.0	0.0
4	4	4	4
0.0	0.0	0.0	0.0
4	4	4	4
0.0	0.0	0.0	0.0
4	4	4	4

0.0 4

2-D:

$$G(x, y) = e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

Slight abuse of notations: We ignore the normalization constant such that

$$\int g(x)dx = 1$$

Gaussian Smoothing to Remove

 $\sigma = 2$

 $\sigma = 4$

			_						
1	1	1		5	5	5		-1	_√
1	-2	1		-3	0	-3		0	(
-1	-1	-1		-3	-3	-3		1	√
Prewitt 1			Kirsch			Frei 8			
			1				I		
1	1	1		1	2	1			
0	0	0		0	0	0			
-1	-1	-1		-1	-2	-1			
Prewitt 2					Sobel				

These kernels are Gradient operators

- Edges are discontinuities of intensity in images
- Correspond to local maxima of image gradient
- Gradient computed by convolution

- General principle applies:
 - Slight smoothing: Good localization, poor detection
 - More smoothing: Poor localization, good detection

Canny's Result

- Given a filter f, define the two objective functions:
 - A(f) large if f produces good localization
 - B(f) large if f produces good detection
- Problem: Find a family of f that maximizes the compromise criterion A(f)B(f)constraint that a single peak is generated by a step edge.
- Solution: Unique solution, a close approximation is the Gaussian derivative.

under the

- The gradient magnitude enhances the edges but 2 problems remain:
 - What threshold should we use to retain only the "real" edges?
 - Even if we had a perfect threshold, we would still have poorly localized edges. How to optimally localize contours?
- Solution:
 - Non-local maxima suppression
 - Hysteresis thresholding

Non-Local Maxima Suppression

• Select the single maximum point across the width of an edge

Very strong edge response. Weaker response but it is Let's start here connected to a confirmed edge point. Let's keep it.

Continue....

Varying Thresholds

Canny Edge Detector Algorithm

- Apply derivative of Gaussian
- Non-maximum suppression
 - Thin multi-pixel wide "ridges" down to single pixel width
- Linking and thresholding
 - Low, high edge-strength thresholds
 - Accept all edges over low threshold that are connected to edge over high threshold

Finding Correspondences Between

- First step toward 3-D reconstruction
- First step toward tracking
- Object Recognition: finding correspondences between feature points in "training" and "test" images.

Triangulation

Epipolar Line

Epipolar Line

Rectification

Rectification

Rectification

Disparity

Sum of Squared Differences

• Subtract pattern and image pixel by pixel and add squares:

$$ssd(u,v) = \sum_{(x,y)\in N} [I(u+x,v+y) - P(x,y)]^2$$

• If identical ssd=0, otherwise ssd >0 Look for minimum of ssd wit respect to u and v.

SSD

Simple Example

More realistic

Normalized Cross-Correlation

$$ncc(u,v) = \frac{\sum_{(x,y)\in N} \left[I(u+x,v+y) - \bar{I}\right] \left[P(x,y) - \bar{P}\right]}{\sqrt{\sum_{(x,y)\in N} \left[I(u+x,v+y) - \bar{I}\right]^2 \sum_{(x,y)\in N} \left[P(x,y) - \bar{P}\right]}}$$

Between -1 and 1

- Invariant to linear transforms
- Independent of the average gray levels of the pattern and the image window

With Normalization

Pattern

Normalized Correlation

Point of maximum correlation

SSD

Baseline

•	Short Baseline	
---	----------------	--

- Good Matching
- Few Occlusions
- Poor Precision

- Long Baseline
 - More Difficult Matching
 - More Occlusions
 - **Better Precision**

Δmhiσιιίτν

- SSD: (Sum of Squared Differences) $\Psi(I_{i}(x, y), I_{r}(x+d, y)) = (I_{i}(x, y) - I_{r}(x-d, y))^{2}$
- SAD: (Sum of Absolute Differences) $\Psi(I_{l}(x, y), I_{r}(x+d, y)) = I_{l}(x, y) - I_{r}(x-d, y)$

Correlation:

$$\Psi(I_{l}(x, y), I_{r}(x+d, y)) = I_{l}(x, y).I_{r}(x-d, y)$$

Normalized Correlation:

$$\psi(I_{l}(x,y),I_{r}(x+d,y)) = \frac{I_{l}(x,y).I_{r}(x-d,y) - I_{r}(x-d,y)}{\sigma_{l}\sigma_{r}(d)}$$

 $\bar{I}_l \bar{I}_r$

Energy Minimization for Stereo

Disparity continuous in most places,

- Matching pixels should have similar intensities.
- Most nearby pixels should have similar disparities

Minimize
$$\sum_{x} \left[I_{1}(x + D(x, y), y) - I_{2}(x, y) + \lambda \sum_{x} \left[D(x + 1, y) - D(x, y) \right]^{2} + \mu \sum_{x} \left[D(x, y + 1) - D(x, y) \right]^{2} \right]$$

except at depth discontinuities

Graph Cuts

Assign edge weights cleverly so that the min-weight cut gives the minimum energy!

Stereo is a labeling problem

Graph cut corresponds to a labeling.

(b) Multi-way Cut

Graph Cuts Improvement

left image

Normalized correlation

true disparities

Graph Cuts

Wednesday, August 11, 2010