
Image Filtering and Stereo
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Multi-Camera Geometry

!
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Multi-Camera Geometry: Stereo 
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Multi-Camera Geometry: Stereo 
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Multi-Camera Geometry
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Multi-Camera Geometry: Stereo 
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Multi-Camera Geometry: Stereo 
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Multi-Camera Geometry
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Thin Lens Model
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Robot Vision & Vision Processing Mtrx4700: Experimental Robotics 39 

Thin Lens Model 
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Thin Lens Model 

No distortion Pincushion Distortions Barrel Distortions 
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Camera Parameters

• Determine the intrinsic parameters of a camera (with lens)

•  What are Intrinsic Parameters? 

•  Focal Length ƒ 

•  Pixel size sx , sy	
 (ku , kv) 

• Distortion coefficients k1 , k2... 

• Image center u0 , v0
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Camera Model

!"
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Camera Calibration 

• Determine the intrinsic parameters of a camera (with 
lens) 

• It is important because … 

• What are Intrinsic Parameters? 

• Focal Length f 
• Pixel size sx , sy (ku , kv) 
• Distortion coefficients k1 , k2… 
• Image center u0 , v0 

Robot Vision & Vision Processing Mtrx4700: Experimental Robotics 

Coord. Of Point in 
the “World” frame 

Coord. of Pixel 
in the image 

s = depth of 3D point in the scene 
(scale factor) 

I E 

Transf. between 
Camera frame and 
“World” frame [Devy 2003] 

Camera Model 
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Camera Model

!!
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• M =  Matrix of Perspective Projection 

• I   = Matrix of Intrinsic Parameters 

• E  = Matrix of Extrinsic Parameters (Rotation + Translation) 

[Devy 2003] 

Camera Model 
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Ideas for Camera Calibration 
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Camera Calibration

!"
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Calibration Procedures 

• Camera Calibration Toolbox for Matlab 
• http://www.vision.caltech.edu/bouguetj/calib_doc/index.html 
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Camera Calibration Toolbox for Matlab 
• http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
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Features in Computer Vision

• What is a feature? 

• Location of sudden change

• Why use features? 

• Information content high 

• Invariant to change of view point, illumination

•  Reduces computational burden
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Image Feature Simplification

!"
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Computer 
Vision 

Algorithm 

Feature 1 
Feature 2 

: 
Feature N 

Feature 1 
Feature 2 

: 
Feature N 

Image 2 

Image 1 
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What makes for GOOD features? 

• Invariance 
• View point (scale, orientation, translation) 
• Lighting condition 
• Object deformations 
• Partial occlusion 

• Other Characteristics 
• Uniqueness 
• Sufficiently many 
• Tuned to the task 
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What makes for GOOD features?
• Invariance

• View point (scale, orientation, translation)

• Lighting condition

• Object deformations

• Partial occlusion

• Other Characteristics

•  Uniqueness

• Sufficiently many

• Tuned to the task
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First Feature: Edge 

• Depth discontinuity 
• Surface orientation 

discontinuity 
• Reflectance 

discontinuity (i.e., 
change in surface 
material properties) 

• Illumination 
discontinuity (e.g., 
shadow) 

#$%&'()*'&%+,(-.*%/+01.'*(23/45//'6(
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How to find Edges? 

73/%)(8%$+'*%69( (:&9'(;'+')+0*/( (-0*6'*(;'+')+0*/

First Feature: Edge
• Depth discontinuity

• Surface orientation 
discontinuity

• Reflectance discontinuity 
(i.e., change in surface 
material properties)

•  Illumination discontinuity 
(e.g., shadow)
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How to find Edges?
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First Feature: Edge 

• Depth discontinuity 
• Surface orientation 

discontinuity 
• Reflectance 

discontinuity (i.e., 
change in surface 
material properties) 

• Illumination 
discontinuity (e.g., 
shadow) 
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How to find Edges? 

73/%)(8%$+'*%69( (:&9'(;'+')+0*/( (-0*6'*(;'+')+0*/Basic Filtering Edge Detection
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Basic Image Filtering

• Modify the pixels in an image based on some function of a local 
neighborhood of the pixels

!"
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Basic Image Filtering 

• Modify the pixels in an image based on some function 
of a local neighborhood of the pixels 

10 5 3 

4 5 1 

1 1 7 

7 
Some function 
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Linear Filtering 

• Linear case is simplest and most useful 
• Replace each pixel with a linear combination of its 

neighbors. 

• The prescription for the linear combination is called the 
convolution kernel. 

10 5 3 

4 5 1 

1 1 7 

7 

0 0 0 

0 0.5 0 

0 1.0 0.5 

!
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Linear Filter = Convolution

!"
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Linear Filter = Convolution 

g22 

+   g22 I(i,j) 

I(.) 

f (i,j) = 

I(.) 

g12 

+  g12 I(i-1,j) 

I(.) 

g13 

+  g13 I(i-1,j+1) + 

I(.) 

g21 

g21 I(i,j-1) 

I(.) 

g23 

+  g23 I(i,j+1)    + 

I(.) 

g31 

g31 I(i+1,j-1) 

I(.) 

g32 

+   g32 I(i+1,j) 

I(.) 

g33 

+  g33 I(i+1,j+1) 

I(.) 

g11 

g11 I(i-1,j-1) 

Robot Vision & Vision Processing Mtrx4700: Experimental Robotics 56 

Linear Filter = Convolution 

• Example on the web: www.jhu.edu/~signals/convolve 
• Matlab function: conv(1D) or conv2(2D) 
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Linear Filter = Convolution 

• Example on the web: www.jhu.edu/~signals/convolve 
• Matlab function: conv(1D) or conv2(2D) 
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Original Image

!"
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Original Image 
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Slight Blurring 
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Slight Blurring
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Original Image 
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Slight Blurring 
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More Blurring
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More Blurring 
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Lots of Blurring 
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Lots of Blurring
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More Blurring 
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Lots of Blurring 
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Gaussian

!"
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Gaussian 
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Smoothing with Gaussian  

Slide credit: Marc Pollefeys 

Gaussian Averaging 
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Gaussian Smoothing to Remove 
Noise

!"

Robot Vision & Vision Processing Mtrx4700: Experimental Robotics 63 

Gaussian Smoothing to Remove Noise 

Robot Vision & Vision Processing Mtrx4700: Experimental Robotics 64 

Edge Detection with Smoothed Images 

Image Blurred Image 

- = 
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Some kernels
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Robinson Compass Masks 
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These kernels are Gradient 
operators

• Edges are discontinuities of intensity in images 

• Correspond to local maxima of image gradient 

•  Gradient computed by convolution

•  General principle applies:

• Slight smoothing: Good localization, poor detection

• More smoothing: Poor localization, good detection
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Smoothing Effects

!"
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These kernels are Gradient operators 

• Edges are discontinuities of intensity in images 
• Correspond to local maxima of image gradient 
• Gradient computed by convolution 

• General principle applies: 
• Slight smoothing: Good localization, poor detection 
• More smoothing: Poor localization, good detection 
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General principle 
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Canny Edge Detector

!"

Robot Vision & Vision Processing Mtrx4700: Experimental Robotics 71 

Canny Edge Detector 

• Canny edge detector shows that Gaussian derivatives 
yield good compromise between localization and 
detection.  
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Canny’s Result 

• Given a filter f, define the two objective functions: 
• A(f) large if f produces good localization 
• B(f) large if f produces good detection 

• Problem: Find a family of f that maximizes the compromise criterion 
    A(f)B(f) 
 under the constraint that a single peak is generated by a step edge. 

• Solution: Unique solution, a close approximation is the Gaussian derivative. 
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Canny’s Result

• Given a filter f, define the two objective functions: 

• A(f) large if f produces good localization

•  B(f) large if f produces good detection

• Problem: Find a family of f that maximizes the compromise criterion   A(f)B
(f)                                                                                       under the 
constraint that a single peak is generated by a step edge.

• Solution: Unique solution, a close approximation is the Gaussian derivative.
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Next Steps
• The gradient magnitude enhances the edges but 2 problems remain:

• What threshold should we use to retain only the “real” edges?

• Even if we had a perfect threshold, we would still have poorly localized edges. How to optimally localize contours?

• Solution:

• Non-local maxima suppression 

• Hysteresis thresholding

!"
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Next Steps 

• The gradient magnitude enhances the edges but 2 problems remain: 
• What threshold should we use to retain only the “real” edges? 
• Even if we had a perfect threshold, we would still have poorly localized edges. How 

to optimally localize contours? 
• Solution: 

• Non-local maxima suppression 
• Hysteresis thresholding 
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Non-Local Maxima Suppression 
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Non-Local Maxima Suppression
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Non-Local Maxima Suppression 
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Non-Local Maxima Suppression

• Select the single maximum point across	
the width of an edge

!"
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Non-Local Maxima Suppression 
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Hysteresis Thresholding 
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Hysteresis Thresholding
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Non-Local Maxima Suppression 
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Hysteresis Thresholding 
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Varying Thresholds

!"

Robot Vision & Vision Processing Mtrx4700: Experimental Robotics 77 

Robot Vision & Vision Processing Mtrx4700: Experimental Robotics 78 

Canny Edge Detector Algorithm 

Steps: 
1. Apply derivative of Gaussian 
2. Non-maximum suppression 

• Thin multi-pixel wide “ridges” down to single pixel width 

3. Linking and thresholding 
• Low, high edge-strength thresholds 
• Accept all edges over low threshold that are connected 

to edge over high threshold 

!"
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Canny Edge Detector Algorithm

• Apply derivative of Gaussian 

• Non-maximum suppression

• Thin multi-pixel wide “ridges” down to single pixel width 

• Linking and thresholding

• Low, high edge-strength thresholds 

• Accept all edges over low threshold that are connected to edge over 
high threshold
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Finding Correspondences Between 
Images

• First step toward 3-D reconstruction

• First step toward tracking

• Object Recognition: finding correspondences between feature points in “training” and “test” images.
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Finding Correspondences Between Images 

• First step toward 3-D reconstruction 
• First step toward tracking 
• Object Recognition: finding correspondences between 

feature points in “training” and “test” images. 
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Finding Correspondences 
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Finding Correspondences Between Images 

• First step toward 3-D reconstruction 
• First step toward tracking 
• Object Recognition: finding correspondences between 

feature points in “training” and “test” images. 
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Finding Correspondences 
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Disparity
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Correspondences for stereovision 

Rectification 
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Matching Functions (for stereo) 
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Triangulation

1

SHAPE FROM X

One image:
• Texture
• Shading
Two images or more:
• Stereo
• Contours
• Motion

GEOMETRIC STEREO

Depth from two or more images:
• Geometry of image pairs
• Establishing correspondences

TRIANGULATION 

Geometric Stereo: Depth from two images

EPIPOLAR LINE

Line on which the corresponding point must lie.

Epipolar Line

EPIPOLAR LINES

Three points shown as 
red crosses.

Corresponding epipolar
lines.

EPIPOLAR LINES
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Epipolar Line
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Epipolar Line
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Rectification
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Correspondences for stereovision 

Rectification 
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Matching Functions (for stereo) 
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Rectification

2

EPIPOLE

Point at which all epipolar lines intersect: 
Located at intersection of line between 
optical centers and image plane.

1C 2C

1E 2E

EPIPOLAR GEOMETRY

Parallel image planes

In general:

Horizontal baseline

RECTIFICATION

Parallel epipolar lines
Reprojection into parallel virtual image planes: 
• Linear operation in projective coordinates
• Real-time implementation possible

RECTIFICATION

'
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'
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232221
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W
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v
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rr
rrr
rrr

W
V
U

),( vu

)','( vu

DISPARITY

Horizontal shift along epipolar line, inversely 
proportional to distance. 

d

FINDING A PATTERN 
IN AN IMAGE

Straightforward Approach

Move pattern everywhere and 
compare with image.

But how?

Pattern
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Disparity
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Sum of Squared Differences

• Subtract pattern and image pixel by pixel and add squares:

• If identical ssd=0, otherwise ssd >0 Look for minimum of ssd with 
respect to u and v.

3

Subtract pattern and image pixel by pixel 
and add squares:

If identical ssd=0, otherwise  ssd >0
Look for minimum of ssd with respect 

to u and v.

SUM OF SQUARE 
DIFFERENCES

Minimum ssd value
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yxPyvxuIvussd
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2),(),(),(

CORRELATION

ssd(u,v) is minimized when correlation is 
largest

Correlation measures similarity

Sum of squares 
of the window
(positive term)

Sum of squares of 
the pattern
(CONSTANT term)
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SIMPLE EXAMPLE

I

P

=

I correlated with P

NOT SO SIMPLE EXAMPLE

• Correlation value depends on the local gray 
levels of the pattern and image window

• Need to normalize

Image Correlation

Pattern

NORMALIZED CROSS 
CORRELATION

• Between -1 and 1
• Invariant to linear transforms 
• Independent of the average gray levels of 

the pattern and the image window
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Pattern

Normalized Correlation

Point of maximum correlation

NORMALIZED EXAMPLE
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SSD

• SSD is minimized when correlation is largest or patches are most 
similar

3

Subtract pattern and image pixel by pixel 
and add squares:

If identical ssd=0, otherwise  ssd >0
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Simple Example
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More realistic
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Normalized Cross-Correlation

• Between -1 and 1

• Invariant to linear transforms

• Independent of the average gray levels of the pattern and the image 
window
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With Normalization
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Effect of Window Size 
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Baseline

5

FRONTO-PARALLEL 
ASSUMPTION

The disparity is assumed to be the same 
in the whole correlation window, which is 
equivalent to assuming constant depth. 

Ok when the surface faces the camera 
but breaks down otherwise.

Valid assumption
Invalid assumption

Small windows:
• Good precision
• Sensitive to noise

Large windows:
• Diminished precision
• Increased robustness to noise

Same kind of trade-off as in the case of 
edge-detection. 

WINDOW SIZE

WINDOW SIZE

14x14 7x7

SCALE-SPACE REVISITED

Gaussian 
pyramid

Difference 
of Gaussians

•Using a small window on a 
reduced image is equivalent to 
using a large one on the 
original image.

•Using difference of Gaussian 
images is an effective way of 
achieving normalization.

It becomes natural to use 
results obtained using low 
resolution images to guide the 
search at higher resolution.

UNCERTAINTY SHORT vs LONG BASELINE

Short baseline:
• Good matches
• Few occlusions
• Poor precision 

Long baseline:
• Harder to match
• More occlusions
• Better precision 

• Short Baseline

• Good Matching

• Few Occlusions

• Poor Precision

• Long Baseline

• More Difficult Matching

• More Occlusions

• Better Precision
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Ambiguity

!"

Robot Vision & Vision Processing Mtrx4700: Experimental Robotics 97 

Ambiguity 

Robot Vision & Vision Processing Mtrx4700: Experimental Robotics 98 

Goals 

• To familiarize you with the basic techniques of Robot/
Computer Vision. 
• Camera Geometry/Model 
• Introduction to Camera Calibration 
• Feature Extraction (Edge & Corner) 
• Image Matching using detected corners 

• To get you excited! 

• To let you experience (and appreciate!) the difficulties 
of real-world computer vision 
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Stereo Matching Functions
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Correspondences for stereovision 

Rectification 

Robot Vision & Vision Processing Mtrx4700: Experimental Robotics 94 

Matching Functions (for stereo) 

#$%&'()'*+,(-%./'01))/2/34/,5

#$%&'()'$6%72/8'01))/2/34/,5
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Energy Minimization for Stereo

• Matching pixels should have similar intensities. 

• Most nearby pixels should have similar disparities

7
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Graph Cuts

the Fast Point Feature Histogram as the input to a similar
framework [11]. All make no use of color and are trained
point cloud classifiers as opposed to the work presented
here, untrained segmentation. Lim & Suter propose another
CRF based classifier including color but operate over ‘super-
voxels’ instead of the complete cloud and again require a
training phase [12].

Markov Random Field (MRF) segmentation techniques
have previously been applied to the point cloud segmentation
problem. Golovinskiy & Funkhouser [13] and Sedlacek &
Zara [14] both propose MRF based binary segmentations that
are closely related to this work, but do not provide multi-class
segmentation and do not utilize color information. Quan et.
al proposed a color based 3D algorithm but again restricted
results to single class segmentations and relied heavily on
user input [15].

III. SEGMENTATION FRAMEWORK

Building upon previous work we develop an MRF based
labeling approach to solve the multi-class segmentation prob-
lem.

A. Graphical Model

MRFs are graphical models that provide a framework for
labeling problems. This paper utilizes an MRF formulation
that allows for a multi-class labeling of a color point cloud.

Let us define G = (V,E) to be a graph with nodes
V = (V1, ..., Vn) and edges E = (Ei,j | i, j ∈ V ) where
Ei,j is a pairwise relationship between node i and node j.
The full formulation can be found in Boykov et. al [16]. In
this paper we describe the energy function as the sum of
φ the unary potential function and ψ the pairwise potential
function. The two energies represent the two types of edges
in the graph: t-links that denote terminal-links and n-links
that denote neighborhood connections between vertices. The
n-link energy encourages coherence in regions of property
consistency.

B. Multi-class segmentation

In the multi-way cut case as proposed by Boykov et.
al [16] additional t-links are created. They span between
each node in V and n terminals, one for each label in
L = {L1, L2, ..., Ln}. The cut process is now attempting
to split the graph into n subsets that contain only one t-
link between each member of V and a single terminal.
Illustrations of the binary and expanded multiway cut are
shown in Figure 1.

C. Optimization

Determining the minimization to the energy function for
a multi-way graph cuts formulation is a well-studied prob-
lem in computer vision. The α-expansion algorithm with
available implementation [17], [18], [1] efficiently computes
an approximate solution that approaches the NP-hard global
solution. This allows us to optimize the proposed energy
function using existing techniques.

A B C

D E F

G H I

T

S

(a) Binary Seg

t-links

L1

L2

L3

Ln

A B C

D E F

G H I

L3
L2

Ln

L1

n-links

(b) Multi-way Cut
Fig. 1. Illustration of traditional binary segmentation cut and multiway
cut that allows for multi-class segmentation. In (a) foreground and back-
ground are segmented through connection of t-links to a foreground and
background node. In (b) a lattice of nodes is connected to the label set
L = L1, L2, L3, ..., Ln only four labels are shown and many initial t-
links are omitted for clarity’s sake.

IV. SEGMENTATION PROCEDURE

The proposed three-dimensional segmentation technique
makes direct use of the input point cloud to perform the
segmentation. To do this, points in the point cloud specify
the vertices of V in the graphical framework. The process
to generate a labeling is as follows:

• The edge relationships in E are computed using a
nearest neighbor calculation based upon a kd-tree. The
techniques locates the nearest four vertices with respect
to the current point. A typical point cloud and associated
neighborhood links can be seen in Figure 2.

• An initial seed point for each possible object is gen-
erated using one of the three methods described in
section IV-A. A small region around this seed point is
used to initialize a color model for the object.

• The color models as discussed in Section IV-B are used
to determine the unary weights of the points in the
scene.

• Using the edge relationships in E the pair-wise weights
are calculated as described in Section IV-C.

• An iterative energy minimization is performed as de-
scribed in Section IV-D.

Fig. 2. A sample point cloud and associated links. The inset displays
the neighborhood relationship between points. The black lines connect
neighboring points. These relationships map directly into the graphical
representation discussed in Section III.

• Stereo is a labeling problem

• Graph cut corresponds to a labeling.

•  Assign edge weights cleverly so that the min-weight cut gives the minimum energy!
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Graph Cuts Improvement

8

GRAPH CUTS

T

TT

1. Stereo is a labeling problem 

2. Graph cut corresponds to a labeling.

Assign edge weights cleverly so that the 
min-weight cut  gives the minimum energy!

NCC vs GRAPH CUTS

Normalized correlation Graph Cuts

left image true disparities

NCC vs GRAPH CUTS

Normalized correlation Graph Cuts

STRENGTHS AND LIMITATIONS

Strengths:
• Practical method for recovering depth.
• Runs in real-time on ordinary hardware.

Limitations:
• Requires multiple views.
• Only applicable to reasonably textured objects.
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