Image Filtering and Stereo

Multi-Camera Geometry

Multi-Camera Geometry

Multi-Camera Geometry

Photo Tourism

Exploring photo collections in 3D
Noah Snavely Steven M. Seitz Richard Szeliski
University of Washington
Microsoft Research
SIGGRAPH 2006

Thin Lens Model

Geometric Distortion

No distortion

Pincushion Distortions

Camera Parameters

- Determine the intrinsic parameters of a camera (with lens)
- What are Intrinsic Parameters?
- Focal Length f
- Pixel size $s_{x}, s_{y}\left(k_{u}, k_{y}\right)$
- Distortion coefficients $\mathrm{k}_{1}, \mathrm{k}_{2} \ldots$
- Image center $\mathrm{u}_{0}, \mathrm{v}_{0}$

Camera Model

$$
\begin{aligned}
& \alpha_{u}=k_{u} f \\
& \alpha_{v}=k_{v} f
\end{aligned}
$$

Camera Model

$$
\left(\begin{array}{c}
s u \\
s v \\
s
\end{array}\right)=M\left(\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right)=I E\left(\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right)
$$

- $\quad \mathrm{M}=$ Matrix of Perspective Projection
- $\quad \mathrm{I}=$ Matrix of Intrinsic Parameters
- $\quad \mathrm{E}=$ Matrix of Extrinsic Parameters (Rotation + Translation)

Ideas for Camera Calibration

Camera Calibration

Camera Calibration Toolbox for Matlab

- http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

Features in Computer Vision

- What is a feature?
- Location of sudden change
- Why use features?
- Information content high
- Invariant to change of view point, illumination
- Reduces computational burden

Image Feature Simplification

Image 2

Feature 2

Feature \mathbf{N}

What makes for GOOD features?

- Invariance
- View point (scale, orientation, translation)
- Lighting condition
- Object deformations
- Partial occlusion
- Other Characteristics
- Uniqueness
- Sufficiently many
- Tuned to the task

First Feature: Edge

- Depth discontinuity
- Surface orientation discontinuity
- Reflectance discontinuity (i.e., change in surface material properties)
- Illumination discontinuity (e.g., shadow)

How to find Edges?

Basic Filtering \longrightarrow Edge Detection

Basic Image Filtering

- Modify the pixels in an image based on some function of a local neighborhood of the pixels

10	5	3
4	5	1
1	1	7

Linear Filtering

- Linear case is simplest and most useful
- Replace each pixel with a linear combination of its neighbors.
- The prescription for the linear combination is called the convolution kernel.

10	5	3
4	5	1
1	1	7

\otimes| 0 | 0 | 0 |
| :--- | :---: | :---: |
| 0 | 0.5 | 0 |
| 0 | 1.0 | 0.5 |$=$| | |
| :--- | :--- | :--- |$=$| | |
| :--- | :--- |
| | 7 |
| | |

Linear Filter = Convolution

Linear Filter = Convolution

$$
f[m, n]=I \otimes g=\sum_{k, l} I[m-k, n-l] g[k, l]
$$

$$
\text { with } \sum_{k, l} g[k, l]=1
$$

- Example on the web: www.jhu.edu/~signals/convolve
- Matlab function: conv(ID) or conv2(2D)

Original Image

Slight Blurring

More Blurring

Lots of Blurring

Gaussian

$$
g(x)=e^{-\frac{x^{2}}{2 \sigma^{2}}}
$$

$$
G(x, y)=e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}
$$

Slight abuse of notations: We ignore the normalization constant such that

$$
\int g(x) d x=1
$$

Gaussian Smoothing to Remove Noise

No smoothing

$\sigma=2$

$\sigma=4$

Some kernels

1	1	1
1	-2	1
-1	-1	-1

Prewitt 1

1	1	1
0	0	0
-1	-1	-1

Prewitt 2

5	5	5
-3	0	-3
-3	-3	-3
Kirsch		

-1	$-\sqrt{2}$	-1
0	0	0
1	$\sqrt{2}$	1
Frei \& Chen		

1	2	1
0	0	0
-1	-2	-1

Sobel

These kernels are Gradient operators

- Edges are discontinuities of intensity in images
- Correspond to local maxima of image gradient
- Gradient computed by convolution
- General principle applies:
- Slight smoothing: Good localization, poor detection
- More smoothing: Poor localization, good detection

Smoothing Effects

Canny Edge Detector

Canny's Result

- Given a filter f, define the two objective functions:
- $A(f)$ large if f produces good localization
- $B(f)$ large if f produces good detection
- Problem: Find a family of f that maximizes the compromise criterion $A(f) B$ (f) under the constraint that a single peak is generated by a step edge.
- Solution: Unique solution, a close approximation is the Gaussian derivative.

Next Steps

- The gradient magnitude enhances the edges but 2 problems remain:
- What threshold should we use to retain only the "real" edges?
- Even if we had a perfect threshold, we would still have poorly localized edges. How to optimally localize contours?
- Solution:
- Non-local maxima suppression
- Hysteresis thresholding

Non-Local Maxima Suppression

Non-Local Maxima Suppression

- Select the single maximum point across the width of an edge

Hysteresis Thresholding

Very strong edge response. Weaker response but it is Let's start here
 connected to a confirmed edge point. Let's keep it.

Continue....

Varying Thresholds

Canny Edge Detector Algorithm

- Apply derivative of Gaussian
- Non-maximum suppression
- Thin multi-pixel wide "ridges" down to single pixel width
- Linking and thresholding
- Low, high edge-strength thresholds
- Accept all edges over low threshold that are connected to edge over high threshold

Finding Correspondences Between

 Images

- First step toward 3-D reconstruction
- First step toward tracking
- Object Recognition: finding correspondences between feature points in "training" and "test" images.

Finding Correspondences

$W\left(\mathbf{p}_{1}\right)$

$W\left(\mathbf{p}_{r}\right)$

Disparity

Triangulation

Epipolar Line

Epipolar Line

Rectification

Rectification

$$
\begin{aligned}
{\left[\begin{array}{c}
U^{\prime} \\
V^{\prime} \\
W^{\prime}
\end{array}\right] } & =\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & 1
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right] \\
u^{\prime} & =U^{\prime} / W^{\prime} \\
v^{\prime} & =V^{\prime} / W^{\prime}
\end{aligned}
$$

Rectification

Disparity

Sum of Squared Differences

- Subtract pattern and image pixel by pixel and add squares:

$$
\operatorname{ssd}(u, v)=\sum_{(x, y) \in N}[I(u+x, v+y)-P(x, y)]^{2}
$$

- If identical ssd=0, otherwise ssd >0 Look for minimum of ssd with respect to u and v.

SSD

$$
\begin{aligned}
& \operatorname{ssd}(u, v)= \sum_{(x, y) \in N}[I(u+x, v+y)-P(x, y)]^{2} \\
&= \sum_{(x, y) \in N} I(u+x, v+y)^{2}+\sum_{(x, y) \in N} P(x, y)^{2}-2 \sum_{(x, y) \in N} I(u+x, v+y) P(x, y) \\
& \begin{array}{ll}
\text { Sum of squares } \\
\text { of the window } \\
\text { (positive term) }
\end{array} \\
& \begin{array}{l}
\text { Sum of squares of } \\
\text { the pattern } \\
\text { (CONSTANT term) }
\end{array}
\end{aligned}
$$

- SSD is minimized when correlation is largest or patches are most similar

Simple Example

More realistic

Normalized Cross-Correlation

$$
n c c(u, v)=\frac{\sum_{(x, y) \in N}[I(u+x, v+y)-\bar{I}][P(x, y)-\bar{P}]}{\sqrt{\sum_{(x, y) \in N}[I(u+x, v+y)-\bar{I}]^{2} \sum_{(x, y) \in N}[P(x, y)-\bar{P}]^{2}}}
$$

- Between -I and I
- Invariant to linear transforms
- Independent of the average gray levels of the pattern and the image window

With Normalization

Baseline

- Short Baseline
- Good Matching
- Few Occlusions
- Poor Precision
- Long Baseline
- More Difficult Matching
- More Occlusions
- Better Precision

Ambiguity

Stereo Matching Functions

SSD: (Sum of Squared Differences)

$$
\psi\left(I_{l}(x, y), I_{r}(x+d, y)\right)=\left(I_{l}(x, y)-I_{r}(x-d, y)\right)^{2}
$$

SAD: (Sum of Absolute Differences)

$$
\psi\left(I_{l}(x, y), I_{r}(x+d, y)\right)=\left|I_{l}(x, y)-I_{r}(x-d, y)\right|
$$

Correlation:

$$
\psi\left(I_{l}(x, y), I_{r}(x+d, y)\right)=I_{l}(x, y) \cdot I_{r}(x-d, y)
$$

Normalized Correlation:

$$
\psi\left(I_{l}(x, y), I_{r}(x+d, y)\right)=\frac{I_{l}(x, y) \cdot I_{r}(x-d, y)-\bar{I}_{l} \bar{I}_{r}}{\sigma_{l} \sigma_{r}(d)}
$$

Energy Minimization for Stereo

Disparity continuous in most places,

- Matching pixels should have similar intensities.
- Most nearby pixels should have similar disparities

$$
\begin{aligned}
\text { Minimize } & \sum\left[I_{1}(x+D(x, y), y)-I_{2}(x, y)\right]^{2} \\
& +\lambda \sum[D(x+1, y)-D(x, y)]^{2} \\
& +\mu \sum[D(x, y+1)-D(x, y)]^{2}
\end{aligned}
$$

Graph Cuts

- Stereo is a labeling problem
- Graph cut corresponds to a labeling.

(a) Binary Seg

(b) Multi-way Cut
- Assign edge weights cleverly so that the min-weight cut gives the minimum energy!

Graph Cuts Improvement

Normalized correlation
true disparities

Graph Cuts

