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Why SLAM?

• SLAM asks the following question:                                                    
Is it possible for an autonomous vehicle to start in an unknown 
environment and then to incrementally build a map of this 
environment while simultaneously using this map to compute vehicle 
location?

• SLAM allows robots to operate in an environment without a priori 
knowledge of a map and without access to independent position 
information

• SLAM is central to a range of indoor, outdoor, in-air and underwater 
applications for both manned and autonomous vehicles
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SLAM

• Localisation 

•  Determine pose given a priori map

• Mapping 

•  Generate map when pose is accurately known from auxiliary source

• SLAM

•  Define some arbitrary coordinate origin (usually the initial vehicle pose).

• Generate a map from on-board sensors while, at the same time, computing pose from the map.

• Errors in map and in pose estimate are dependent.
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A Little Bit of History

• Addressing SLAM in a probabilistic setting began about 20 years ago at ICRA86 in 
San Francisco.

• Probabilistic methods were new to robotics and AI.

• Peter Cheeseman, Jim Crowley, Raja Chatila, Olivier Faugeras and Hugh 
Durrant-Whyte were all looking at applying estimation-theoretic methods 
to mapping and localization problems.

• Landmark paper by Smith, Self and Cheeseman showed that as a mobile robot 
moves through an unknown environment taking relative observations of 
landmarks, the estimates of these landmarks are all necessarily correlated with 
each other because of the common error in estimated vehicle location.
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Implications Smith,Self, and 
Cheeseman

• A consistent full solution to the combined localization and mapping 
problem would require a joint state composed of the vehicle pose 
and every landmark position, to be updated following each 
landmark observation.

• An EKF estimator would need a huge state vector (of order the 
number of landmarks maintained in the map) with computation 
scaling as the square of the number of landmarks.
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Map Errors

• It was assumed at the time that the estimated map errors would not converge 
and would instead exhibit a random walk behavior with unbounded error 
growth.

• Conceptual break-through: the combined mapping and localization problem, 
once formulated as a single estimation problem, is convergent (Csorba 96, 
Dissa 01).

• Recognize that the correlations between landmarks, which previously 
people had tried to minimize, were actually the critical part of the 
problem and that, on the contrary, the more these correlations grew, 
the better the solution.
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Basic SLAM ComponentsBasic SLAM ComponentsBasic SLAM Components
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Alternative SLAM Solutions 

• In this talk, we focus on a particular SLAM solution

• Building a map of discrete landmarks

• Landmark based SLAM is not the only solution, but

• We are convinced that all solutions should have a probabilistic 
basis to deal with uncertainty
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Alternatives

• Some alternatives:

• Trajectory-based (or view-based) SLAM

• Probability over vehicle trajectory, so as to align all views

• Implementations typically neglect “map” correlations – implicit in reusing view information

• Topological SLAM

• Accuracy requirements of metric map is relaxed

• Emphasis is instead on reliable recognition of places

• Primarily a data association problem
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Models

• Models are central to creating a representation of the world.

• Must have a mapping between sensed data (eg, laser, cameras, 
odometry) and the states of interest (eg, vehicle pose, stationary 
landmarks)

• Two essential model types:

• Vehicle motion 

• Sensing of external objects
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States, Controls, Observations

Joint State with Momentary Pose

Exercise 2: Simultaneous Localization and
Mapping using the Extended Kalman Filter

August 7, 2010

1 Introduction

2 Exercises
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where xvk , yvk are the xy position of the robot at time k and φvk is the orientation of
the robot at time k.

2.2 Sensor model
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Joint State with  Pose History

Exercise 2: Simultaneous Localization and
Mapping using the Extended Kalman Filter
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 Control Inputs/Observations
Control Inputs Observations

Exercise 2: Simultaneous Localization and
Mapping using the Extended Kalman Filter
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Motion Model
Vehicle Motion ModelVehicle Motion Model

• Ackerman 
steeredsteered 
vehicles: 
Bicycle modelBicycle model

• Discrete time 
model:model:

SLAMTim Bailey 15

Ackerman steered vehicles: 
Bicycle model

Discrete time model:
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SLAM Motion Model

• Joint State Landmarks are Stationary

Exercise 2: Simultaneous Localization and
Mapping using the Extended Kalman Filter

August 8, 2010
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Observation Model

• Range Bearing Measurement

zik = hi(xk) =

� �
(xi − xvk)

2 + (xi − xvk)
2

arctan
yi−yvk
xi−xvk

− φvk

�

(5)

2.2 Sensor model

2

!"#$% &
'%(%#"$()*

Wednesday, August 11, 2010



SLAM Graphical Model!

Wednesday, August 11, 2010



SLAM Graphical Model
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Perfect World: Deterministic

• Exact pose from motion model

• Global localization by triangulation

•  Even if range-only or bearing-only sensors, can localize given 
enough measurements

• Solve simultaneous equations: N equations for N unknowns
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Real World: Uncertain

• All measurements have errors

• In SLAM, measurement errors induce dependencies in the landmark 
and vehicle pose estimates

• Everything is correlated
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Key property of stochastic SLAM

• Largely a parameter estimation problem

• Since the map is stationary

• No process model, no process noise

• For Gaussian SLAM

• Uncertainty in each landmark reduces monotonically after 
landmark initialization

• Map converges
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Correlated Error
Dependent ErrorsDependent Errors
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Correlated Estimates
  

xmj xk+2mj

zk,j uk+2

xx

xk+1
zk,j

uk+1

uk+2

xk

xkxk-1
uk

uk+1

mi

zk-1,i
Robot Landmark

i
Estimated

TrueTrue

Wednesday, August 11, 2010



SLAM Convergence
• An observation in a neighborhood acts like a displacement to a spring system such 

that it's effect is great in the immediate neighborhood and, dependent on local 
stiffness (correlation) properties, diminishes with distance to other landmarks.

• As the robot moves through this environment and takes observations of the 
landmarks, the springs become increasingly (and monotonically) stiffer.

• In the limit, a rigid map of landmarks or an accurate relative map of the environment 
is obtained.

• As the map is built, the location accuracy of the robot measured relative to the map 
is bounded only by the quality of the map and relative measurement sensor.

• In the theoretical limit, robot relative location accuracy becomes equal to the 
localization accuracy achievable with an a priori map.
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Monotonic Convergence

• When a new landmark 
is initialized, its 
uncertainty is maximum

• Landmark uncertainty 
decreases 
monotonically with 
each new observation
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Non-Gaussian SLAM 

• Convergence results proved for linear Gaussian case

• Results do not hold in general for non-Gaussian SLAM even with ideal Bayesian filter 

• Can contrive (conflicting) likelihood functions that actually increase uncertainty 
when fused

• However, for all real world scenarios, the convergence results should always hold

• Parameter estimation (ie, no process noise) typically gives rise to shrinking 
uncertainty

• Note, with approximate estimation all bets are off (Linearization, Monte Carlo)
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Implementing Probabilistic SLAM
• The problem is that Bayesian operations are intractable in general.

• General equations are good for analytical derivations, not good 
for implementation

• We need approximations

• Linearised Gaussian systems (EKF, UKF, EIF, SAM)

• Monte Carlo sampling methods (Rao-Blackwellised particle 
filters)
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EKF SLAM

• The complicated Bayesian equations for augmentation, marginalisation, 
and fusion have simple and efficient closed form solutions for linear 
Gaussian systems

• For non-linear systems, just linearise – 

• EKF, EIF: Jacobians 

•  UKF: use deterministic samples
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EKF Augmentation

• Add new pose (adding new 
landmarks is the same)

• Compute mean vector 
directly from non-linear 
model

• Compute covariance by 
linearisation
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Covariance Augmentation
• Need Jacobians of vehicle motion model with respect to all uncertain 

variables

• Presume, without loss of generality, that all motion uncertainty 
is contained in control variables uk and has covariance Uk
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Problem with EKF SLAM

• Difficult to manage data association ambiguity efficiently

• Especially difficult if environment is cluttered, dynamic, or 
has structural similarities

• Linearisation of models can badly corrupt statistics

• Biggest issues seems to be variation in linearisation point
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Particle Filter SLAM

• The FastSLAM algorithm introduced by Montemerlo and Thrun

• Rao-Blackwellised particle filter

• Particles for vehicle pose states

• Each particle represents an entire pose history or trajectory

• Each particle has bank of independent EKFs for landmark states

• Deals well with non-linear vehicle motion model and ambiguous data 
association
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 Problem with FastSLAM

• Suffers from a problem common to all particle filter estimators with 
stationary parameters.

• Particle weights diverge over successive observations (weight 
degeneracy)

•  Left with a single particle of significant weight
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